ddf &

distributed data framework

Distributed Data Framework

Documentation
Complete Documentation

Version 2.16.1. Copyright (c) Codice Foundation

Table of Contents

License
Introduction
1. About DDF
1.1. Introducing DDF
1.2. Component Applications
2. Documentation Guide
2.1. Documentation Conventions
2.1.1. Customizable Values
2.1.2. Code Values
2.1.3. Hyperlinks
2.2. Support
2.2.1. Documentation Updates
3. Core Concepts
3.1. Introduction to Search
3.2. Introduction to Metadata
3.3. Introduction to Ingest
3.4. Introduction to Resources
3.5. Introduction to the Catalog Framework
3.6. Introduction to Federation and Sources
3.7. Introduction to Events and Subscriptions
3.8. Introduction to Registries
3.9. Introduction to Endpoints
3.10. Introduction to High Availability
3.10.1. High Availability Supported Capabilities
3.11. Standards Supported by DDF
3.11.1. Catalog Service Standards
3.11.2. Data Formats
3.11.3. Map Formats
3.11.4. Security Standards
4. Quick Start Tutorial
4.1. Installing (Quick Start)
4.1.1. Quick Install Prerequisites
4.1.2. Quick Install of DDF
4.1.3. Quick Install of DDF on a remote headless server
4.2. Certificates (Quick Start)
4.2.1. Demo Certificate Authority (CA)

© 00 09 9 O o o g1 g U1k ok b bk R W W WD NDDNDN e

e o O T Y ey
D OO Ul R W W W N R, O O O

4.2.1.1. Creating New Server Keystore Entry with the CertNew Scripts
4.2.1.2. Dealing with Lack of DNS
4.2.2. Creating Self-Signed Certificates
4.2.2.1. Creating a custom CA Key and Certificate
4.2.2.2. Sign Certificates Using the custom CA
4.2.3. Updating Settings After Changing Certificates
4.3. Configuring (Quick Start)
4.4. Ingesting (Quick Start)
4.4.1. Ingesting Sample Data
Managing
5. Securing
5.1. Security Hardening
5.2. Auditing
5.2.1. Enabling Fallback Audit Logging
6. Installing
6.1. Installation Prerequisites
6.1.1. Hardware Requirements
6.1.2. Java Requirements
6.2. Installing With the DDF Distribution Zip
6.2.1. Configuring Operating Permissions and Allocations
6.2.1.1. Setting Directory Permissions
6.2.1.2. Configuring Memory Allocation for the DDF Java Virtual Machine
6.2.1.3. Enabling JMX
6.2.1.4. Configuring Memory for the Solr Server
6.2.2. Managing Keystores and Certificates
6.2.2.1. Managing Keystores
6.2.2.1.1. Adding an Existing Server Keystore
6.2.2.1.2. Adding an Existing Server Truststore

6.2.2.1.3. Creating a New Keystore/Truststore with an Existing Certificate and Private Key

6.2.2.1.4. Updating Key Store / Trust Store via the Admin Console
6.3. Initial Startup
6.3.1. Verifying Startup
6.3.2. DDF Directory Contents after Installation and Initial Startup
6.3.3. Completing Installation
6.3.3.1. Completing Installation from the Admin Console
6.3.3.2. Completing Installation from the Command Console
6.3.3.2.1. Configuring Guest Claim Attributes
6.3.3.2.2. System Configuration Settings

16
18
19
19
20
20
20
21
21
22
22
22
23
23
24
24
25
25
29
31
31
33
33
34
34
35
36
36

37
39
39
40
41
41
43
43
44

6.3.4. Firewall Port Configuration
6.3.5. Internet Explorer 11 Enhanced Security Configuration
6.4. High Availability Initial Setup
6.4.1. High Availability Initial Setup Exceptions
6.4.1.1. Failover Proxy Integration
6.4.1.2. Identical Directory Structures
6.4.1.3. Highly Available Security Auditing
6.4.1.4. Shared Storage Provider
6.4.1.5. High Availability Certificates
6.4.1.6. High Availability Installation Profile
7. Configuring
7.1. Admin Console Tutorial
7.2. Console Command Reference
7.2.1. Feature Commands
7.2.1.1. Uninstalling Features from the Command Console
7.3. Configuration Files
7.3.1. Configuring Global Settings with custom.system.properties
7.3.2. Configuring with .config Files
7.4. Configuring User Access
7.4.1. Configuring Guest Access
7.4.1.1. Denying Guest User Access
7.4.1.2. Allowing Guest User Access
7.4.1.2.1. Configuring Guest Interceptor if Allowing Guest Users
7.4.1.2.2. Configuring Guest Claim Attributes
7.4.2. Configuring REST Services for Users
7.4.2.1. Configuring Included Identity Provider
7.4.2.1.1. Configuring Included STS
7.4.2.2. Connecting to an External Identity Provider
7.4.2.3. Configuring Without an Identity Provider
7.4.2.3.1. Using STS without IdP
7.4.2.4. Configuring Multi Factor Authentication
7.4.3. Configuring SOAP Services for Users
7.4.3.1. Connecting to Included STS with SOAP
7.4.4. Connecting to an LDAP Server
7.4.5. Updating System Users
7.4.6. Restricting Access to Admin Console
7.4.6.1. Restricting Feature, App, Service, and Configuration Access

7.4.7. Removing Default Users

44
44
435
435
46
46
46
47
47
47
48
48
50
50
51
51
52
61
62
62
63
63
63
63
64
64
69
71
71
72
72
72
73
73
73
75
75
76

7.4.8. Disallowing Login Without Certificates
7.4.9. Managing Certificate Revocation
7.4.9.1. Managing a Certificate Revocation List (CRL)
7.4.9.1.1. Creating a CRL

Revoke a Certificate and Create a New CRL that Contains the Revoked Certificate

Viewing a CRL

7.4.9.1.2. Enabling Certificate Revocation
Add Revocation to a Web Context
Adding Revocation to an Endpoint

Verifying Revocation

7.4.9.2. Managing an Online Certificate Status Protocol (OCSP) Server

7.4.9.2.1. Enabling OCSP Revocation
7.5. Configuring Data Management
7.5.1. Configuring Solr
7.5.1.1. Configuring Solr Catalog Provider Synonyms
7.5.1.1.1. Defining synonym rules in the Solr Provider
7.5.1.2. Hardening Solr
7.5.1.2.1. Hardening Solr Server Configuration
7.5.1.2.2. Solr Server Password Management
Do not Autogenerate a Solr Password
Change the Password to a Specific String
Restore the Default Password in Solr
Removing Basic Authentication from Solr
7.5.1.2.3. Configuring Solr Encryption
7.5.1.3. Accessing the Solr Admin UI
7.5.1.3.1. Configuring a Browser to Access Solr Admin Ul
7.5.1.3.2. Using DDF Keystores
7.5.1.3.3. Solr Admin UI's URL
7.5.2. Changing Catalog Providers
7.5.3. Changing Hostname
7.5.4. Configuring Errors and Warnings
7.5.4.1. Enforcing Errors or Warnings
7.5.4.2. Hiding Errors or Warnings from Queries
7.5.4.3. Hiding Errors and Warnings from Users Based on Role
7.5.5. Content Directory Monitor
7.5.5.1. Installing the Content Directory Monitor
7.5.5.2. Configuring Permissions for the Content Directory Monitor

7.5.5.3. Configuring the Content Directory Monitor

77
78
78
78
78
78
78
79
80
80
81
81
82
82
82
82
82
83
83
83
83
84
84
85
85
85
85
85
85
86
86
86
86
87
87
87
88
88

7.5.5.4. Using the Content Directory Monitor
7.5.6. Configuring System Usage Message
7.5.7. Configuring Data Policy Plugins
7.5.7.1. Configuring the Metacard Attribute Security Policy Plugin
7.5.7.2. Configuring the Metacard Validation Marker Plugin
7.5.7.3. Configuring the Metacard Validity Filter Plugin
7.5.7.4. Configuring the XML Attribute Security Policy Plugin
7.5.8. Configuring Data Access Plugins
7.5.8.1. Configuring the Security Audit Plugin
7.6. Configuring Security Policies
7.6.1. Configuring the Web Context Policy Manager
7.6.1.1. Authentication Types
7.6.1.2. Required Attributes
7.6.1.3. White Listed Contexts
7.6.2. Configuring Catalog Filtering Policies
7.6.2.1. Setting Internal Policies
7.6.2.2. Setting XACML Policies
7.6.2.3. Catalog Filter Policy Plugins
7.7. Configuring User Interfaces
7.7.1. Configuring Intrigue
7.7.1.1. Configuring Default Layout for Intrigue
7.7.1.2. Configuring Map Layers for Intrigue
7.7.1.3. Map Configuration for Intrigue
7.7.1.4. Configuring User Access to Ingest and Metadata for Intrigue
7.7.1.5. Configuring the Intrigue Upload Editor
7.7.1.6. Configuring Search Options for Intrigue
7.7.1.7. Configuring Query Feedback for Intrigue
7.8. Configuring Federation
7.8.1. Enable SSL for Clients
7.8.2. Configuring HTTP(S) Ports
7.8.3. Configuring HTTP Proxy
7.8.4. Federation Strategy
7.8.4.1. Configuring Federation Strategy
7.8.4.1.1. Catalog Federation Strategy
7.8.5. Connecting to Sources
7.8.5.1. Federated Source for Atlassian Confluence(R)
7.8.5.2. CSW Specification Profile Federated Source
7.8.5.3. CSW Federation Profile Source

89
91
92
92
92
93
93
93
93
94
94
94
94
95
95
95
95
96
96
96
96
97
98
99
99
100
100
101
102
103
103
104
104
104
105
107
108
109

7.8.5.4. Content File System Storage Provider
7.8.5.5. GMD CSW Source
7.8.5.6. OpenSearch Source
7.8.5.7. Registry Store
7.8.5.8. Solr Catalog Provider
7.8.5.9. WES 1.0 Source
7.8.5.10. WES 1.1 Source
7.8.5.11. WES 2.0 Source
7.8.6. Configuring Endpoints
7.8.6.1. Configuring Catalog REST Endpoint
7.8.6.2. Configuring CSW Endpoint
7.8.6.3. Configuring FTP Endpoint
7.8.6.4. Configuring KML Endpoint
7.8.6.5. Configuring OpenSearch Endpoint
7.8.6.6. Configuring WPS Endpoint
7.8.6.7. Compression Services
7.8.7. Federating Through a Registry
7.8.7.1. Configuring Identity Node
7.8.7.1.1. Adding a Service Binding to a Node
7.8.7.2. Publishing to Other Nodes
7.8.7.3. Subscribing to Another Node
7.9. Environment Hardening
7.9.1. Known Issues with Environment Hardening
7.10. Configuring for Special Deployments
7.10.1. Multiple Installations
7.10.1.1. Reusing Configurations
7.10.1.1.1. Reusing Configurations Across Different Versions
7.10.1.2. Isolating Solr Cloud and Zookeeper
7.10.2. Configuring for a Fanout Proxy
7.10.3. Standalone Security Token Service (STS) Installation
7.10.4. Configuring for a Highly Available Cluster
7.11. Configuring UI Themes
7.11.1. Landing Page
7.11.1.1. Installing the Landing Page
7.11.1.2. Configuring the Landing Page
7.11.1.3. Customizing the Landing Page
7.11.2. Configuring Logout Page
7.11.3. Platform UI Themes

110
110
111
113
113
116
117
118
120
120
121
121
121
122
123
123
124
124
126
127
127
128
128
132
132
132
134
135
135
135
136
136
136
136
136
136
137
137

7.11.3.1. Navigating to Ul Theme Configuration 137

7.11.3.2. Customizing the UI Theme 138
7.12. Miscellaneous Configurations 138
7.12.1. Configuring Thread Pools 138
7.12.2. Configuring Jetty ThreadPool Settings 138
7.12.3. Configuring Alerts 138
7.12.3.1. Configuring Decanter Service Level Agreement (SLA) Checker 139
7.12.3.2. Configuring Decanter Scheduler 139
7.12.4. Encrypting Passwords 139
7.12.4.1. Encryption Command 139

8. Running 140
8.1. Starting 140
8.1.1. Run DDF as a Managed Service 140
8.1.1.1. Running as a Service with Automatic Start on System Boot 140
8.1.1.2. Karaf Documentation 143

8.2. Managed Services 143
8.2.1. Run Solr as Managed Service 143
8.2.1.1. Configure Solr as a Windows Service 143
8.2.1.2. Configure Solr as a Systemd Service 144
8.2.2. Starting from Startup Scripts 145
8.2.3. Starting as a Background Process 145
8.2.4. Stopping DDF 146
8.3. Maintaining 146
8.3.1. Console Commands 146
8.3.1.1. Console Command Help 147
8.3.1.2. CQL Syntax 147
8.3.1.3. Available Console Commands 148
8.3.1.3.1. Catalog Commands 148
8.3.1.3.2. Solr Commands 152
8.3.1.3.3. Subscriptions Commands 152
8.3.1.3.4. Platform Commands 155
8.3.1.3.5. Migrate Commands 156
8.3.1.3.6. Persistence Store Commands 156
8.3.1.4. Command Scheduler 156
8.3.1.4.1. Schedule a Command 157
8.3.1.4.2. Updating a Scheduled Command 157
8.3.1.4.3. Output of Scheduled Commands 158

8.4. Monitoring 158

8.4.1. Metrics Reporting
8.4.2. Managing Logging
8.4.2.1. Configuring Logging
8.4.2.2. DDF log file
8.4.2.3. Controlling log level
8.4.2.4. Controlling the size of the log file
8.4.2.5. Number of backup log files to keep

158
159
159
159
159
159
159

8.4.2.6. Enabling logging of inbound and outbound SOAP messages for the DDF SOAP endpoirits9

8.4.2.7. Logging External Resources
8.4.2.8. Enabling HTTP Access Logging
8.4.2.9. Using the LogViewer
8.5. Troubleshooting
8.5.1. Deleted Records Are Being Displayed In The Search UI’s Search Results
9. Data Management
9.1. Ingesting Data
9.1.1. Ingest Command
9.1.2. User Interface Ingest
9.1.3. Content Directory Monitor Ingest
9.1.4. External Methods of Ingesting Data
9.1.5. Creating And Managing System Search Forms Through Karaf
9.1.6. Other Methods of Ingesting Data
9.2. Validating Data
9.2.1. Validator Plugins on Ingest
9.2.1.1. Validators run on ingest
9.2.2. Configuring Schematron Services
9.2.3. Viewing Invalid Metacards
9.2.4. Manually Editing Attributes
9.2.5. Injecting Attributes
9.2.6. Overriding Attributes
9.3. Backing Up the Catalog
9.4. Removing Expired Records from the Catalog
9.5. Migrating Data
9.6. Automatically Added Metacard Attributes
9.6.1. Attributes Added on Ingest
9.6.1.1. Attributes Added by Input Transformers
9.6.1.2. Attributes Added by Attribute Injection
9.6.1.3. Attributes Added by Default Attribute Types
9.6.1.4. Attributes Added by Attribute Overrides (Ingest)

159
160
160
161
163
164
164
164
165
165
165
167
168
168
168
169
169
170
170
171
171
171
172
172
172
172
173
174
174
174

9.6.1.5. Attributes Added by Pre-Authorization Plugins 174

9.6.1.6. Attributes Added by Pre-Ingest Plugins 175
9.6.2. Attributes Added on Query 175
9.6.2.1. Attributes Added by Attribute Overrides (Query) 175
Using 175
10. Using the Landing Page 176
10.1. Search DDF Button 176
10.2. Data Source Availability 176
10.3. Announcements 176
11. Using Intrigue 176
11.1. Accessing Intrigue 176
11.2. Workspaces in Intrigue 177
11.2.1. Creating a Workspace in Intrigue 177
11.2.2. Configuring a Workspace in Intrigue 178
11.2.3. Sharing Workspaces 179
11.3. Ingesting from Intrigue 179
11.3.1. Using the Upload Editor 180
11.4. Searching with Intrigue 180
11.4.1. Search Tab 181
11.4.1.1. Editing a Search 183
11.4.1.1.1. Editing Search Settings 185
11.4.1.1.2. Editing Search Notifications 185
11.4.1.1.3. Viewing Search Status 185
11.4.1.2. Refining Search Results 186
11.4.1.3. Search Result Options 187
11.4.2. Lists Tab 187
11.4.2.1. Creating a List 187
11.4.2.2. Adding/Removing Results to a List 188
11.5. Viewing Search Results 190
11.5.1. Adding Visuals 190
11.5.2. Editing Records 191
11.5.3. Viewing Text Previews 191
11.5.4. Editing Associations on a Record 191
11.5.5. Viewing Revision History 192
11.5.6. Viewing Metadata Quality 192
11.5.7. Exporting a Result 193
11.5.8. Archiving a Result 193

11.5.9. Restoring Archived Results 193

11.5.10. Overwriting a Resource
11.5.11. Intrigue Settings
11.5.12. Intrigue Notifications
11.5.13. Intrigue Low Bandwidth Mode
12. Using the Simple Search
12.1. Search
12.1.1. Search Criteria
12.1.2. Results
12.1.2.1. Results Summary
12.1.2.2. Results Table
12.1.3. Result View
Integrating
13. Endpoints
13.1. Ingest Endpoints
13.2. CRUD Endpoints
13.3. Query Endpoints
13.4. Content Retrieval Endpoints
13.5. Pub-Sub Endpoints
13.6. Endpoint Details
13.6.1. Catalog REST Endpoint
13.6.1.1. Catalog REST Create Operation Examples
13.6.1.2. Catalog REST Read Operation Examples
13.6.1.3. Catalog Rest Update Operation Examples
13.6.1.4. Catalog REST Delete Operation Examples
13.6.1.5. Catalog REST Sources Operation Examples
13.6.2. CSW Endpoint
13.6.2.1. CSW Endpoint Create Examples
13.6.2.2. CSW Endpoint Query Examples
13.6.2.3. CSW Endpoint Update Examples
13.6.2.4. CSW Endpoint Publication/Subscription Examples
13.6.2.5. CSW Endpoint Delete Examples
13.6.2.6. CSW Endpoint Get Capabilities Examples
13.6.3. FTP Endpoint
13.6.3.1. FTP Endpoint Create Examples
13.6.3.2. FTP Endpoint Rename Command
13.6.4. OpenSearch Endpoint
13.6.4.1. OpenSearch Contextual Queries
13.6.4.1.1. Complex OpenSearch Contextual Query Format

194
194
196
196
196
196
196
197
197
197
198
198
198
199
199
199
200
200
200
200
201
202
205
205
206
206
207
210
219
224
229
230
235
236
236
236
236
237

13.6.4.2. OpenSearch Temporal Queries
13.6.4.3. OpenSearch Geospatial Queries
13.6.4.4. Additional OpenSearch Query Parameters
13.6.5. Queries Endpoint
13.6.5.1. Queries Endpoint Create Examples
13.6.5.2. Queries Endpoint Retrieve All Examples
13.6.5.3. Queries Endpoint Retrieve All Fuzzy Examples
13.6.5.4. Queries Endpoint Retrieve Examples
13.6.5.5. Queries Endpoint Update Examples
13.6.5.6. Queries Endpoint Delete Examples
Developing
14. Catalog Framework API
14.1. Catalog API Design
14.1.1. Ensuring Compatibility
14.1.2. Catalog Framework Sequence Diagrams
14.1.2.1. Error Handling
14.1.2.2. Query
14.1.2.3. Product Retrieval
14.1.2.4. Product Caching
14.1.2.5. Product Download Status
14.1.3. Catalog API
14.1.3.1. Catalog API Search Interfaces
14.1.3.2. Catalog Search Result Objects
14.1.3.3. Search Programmatic Flow
14.1.3.4. Sort Policies
14.1.3.5. Product Retrieval
14.1.3.6. Notifications and Activities
14.1.3.6.1. Notifications
14.1.3.6.2. Activities
14.2. Included Catalog Frameworks, Associated Components, and Configurations
14.2.1. Standard Catalog Framework
14.2.1.1. Installing the Standard Catalog Framework
14.2.1.2. Configuring the Standard Catalog Framework
14.2.1.3. Known Issues with Standard Catalog Framework
14.2.2. Catalog Framework Camel Component
14.2.2.1. Message Headers
14.2.2.1.1. Catalog Framework Producer
14.2.2.2. Sending Messages to Catalog Framework Endpoint

238
238
240
241
242
243
244
244
244
246
247
247
249
249
249
250
250
251
251
252
252
252
252
253
253
254
235
2355
235
235
256
256
256
257
258
258
258
258

14.2.2.2.1. Catalog Framework Producer
14.2.2.2.2. Samples
15. Transformers
15.1. Available Input Transformers
15.2. Available Metacard Transformers
15.3. Available Query Response Transformers
15.4. Transformers Details
15.4.1. Atom Query Response Transformer
15.4.1.1. Installing the Atom Query Response Transformer
15.4.1.2. Configuring the Atom Query Response Transformer
15.4.1.3. Using the Atom Query Response Transformer
15.4.2. CSW Query Response Transformer
15.4.2.1. Installing the CSW Query Response Transformer
15.4.2.2. Configuring the CSW Query Response Transformer
15.4.3. GeoJSON Input Transformer
15.4.3.1. Installing the GeoJSON Input Transformer
15.4.3.2. Configuring the GeoJSON Input Transformer
15.4.3.3. Using the Geo]JSON Input Transformer
15.4.3.4. Conversion to a Metacard
15.4.3.4.1. Metacard Extensibility
15.4.3.5. Usage Limitations of the GeoJSON Input Transformer
15.4.4. GeoJSON Metacard Transformer
15.4.4.1. Installing the GeoJSON Metacard Transformer
15.4.4.2. Configuring the GeoJSON Metacard Transformer
15.4.4.3. Using the GeoJSON Metacard Transformer
15.4.5. GeoJSON Query Response Transformer
15.4.5.1. Installing the GeoJSON Query Response Transformer
15.4.5.2. Configuring the GeoJSON Query Response Transformer
15.4.6. KML Metacard Transformer
15.4.6.1. Installing the KML Metacard Transformer
15.4.6.2. Configuring the KML Metacard Transformer
15.4.6.3. Using the KML Metacard Transformer
15.4.7. KML Query Response Transformer
15.4.7.1. Installing the KML Query Response Transformer
15.4.7.2. Configuring the KML Query Response Transformer
15.4.7.3. Using the KML Query Response Transformer
15.4.8. KML Style Mapper
15.4.8.1. Installing the KML Style Mapper

258
2359
2359
261
261
262
263
263
263
263
263
266
266
266
266
267
267
267
267
268
269
269
269
270
270
271
271
272
272
272
272
272
275
275
275
275
278
279

15.4.8.2. Configuring the KML Style Mapper
15.4.9. Metadata Metacard Transformer
15.4.9.1. Installing the Metadata Metacard Transformer
15.4.9.2. Configuring the Metadata Metacard Transformer
15.4.9.3. Using the Metadata Metacard Transformer
15.4.10. PDF Input Transformer
15.4.10.1. Installing the PDF Input Transformer
15.4.10.2. Configuring the PDF Input Transformer
15.4.11. PPTX Input Transformer
15.4.11.1. Installing the PPTX Input Transformer
15.4.11.2. Configuring the PPTX Input Transformer
15.4.12. Query Response Transformer Consumer
15.4.12.1. Installing the Query Response Transformer Consumer
15.4.12.2. Configuring the Query Response Transformer Consumer
15.4.13. Registry Transformer
15.4.13.1. Installing the Registry Transformer
15.4.13.2. Configuring the Registry Transformer
15.4.14. Resource Metacard Transformer
15.4.14.1. Installing the Resource Metacard Transformer
15.4.14.2. Configuring the Resource Metacard Transformer
15.4.14.3. Using the Resource Metacard Transformer
15.4.15. Thumbnail Metacard Transformer
15.4.15.1. Installing the Thumbnail Metacard Transformer
15.4.15.2. Configuring the Thumbnail Metacard Transformer
15.4.15.3. Using the Thumbnail Metacard Transformer
15.4.16. Tika Input Transformer
15.4.16.1. Installing the Tika Input Transformer
15.4.16.2. Configuring the Tika Input Transformer
15.4.17. Video Input Transformer
15.4.17.1. Installing the Video Input Transformer
15.4.17.1.1. Configuring the Video Input Transformer
15.4.18. XML Input Transformer
15.4.18.1. Installing the XML Input Transformer
15.4.18.2. Configuring the XML Input Transformer
15.4.19. XML Metacard Transformer
15.4.19.1. Installing the XML Metacard Transformer
15.4.19.2. Configuring the XML Metacard Transformer
15.4.19.3. Using the XML Metacard Transformer

279
281
281
281
281
281
282
282
282
282
282
282
283
283
283
283
283
283
283
283
283
284
284
284
284
284
285
285
285
285
285
285
286
286
286
286
286
286

15.4.20. XML Query Response Transformer

15.4.20.1. Installing the XML Query Response Transformer
15.4.20.2. Configuring the XML Query Response Transformer
15.4.20.3. Using the XML Query Response Transformer

15.5. Mime Type Mapper
15.5.1. DDF Mime Type Mapper

15.5.1.1. Installing the DDF Mime Type Mapper

15.5.1.2. Configuring DDF Mime Type Mapper
15.6. Mime Type Resolver
15.6.1. Custom Mime Type Resolver

15.6.1.1. Installing the Custom Mime Type Resolver
15.6.1.1.1. Configuring the Custom Mime Type Resolver

15.6.2. Tika Mime Type Resolver

15.6.2.1. Installing the Tika Mime Type Resolver
15.6.2.1.1. Configuring the Tika Mime Type Resolver

16. Catalog Plugins
16.1. Types of Plugins

16.1.1. Pre-Authorization Plugins

16.1.1.1. Available Pre-Authorization Plugins
16.1.2. Policy Plugins

16.1.2.1. Available Policy Plugins
16.1.3. Access Plugins

16.1.3.1. Available Access Plugins
16.1.4. Pre-Ingest Plugins

16.1.4.1. Available Pre-Ingest Plugins
16.1.5. Post-Ingest Plugins

16.1.5.1. Available Post-Ingest Plugins
16.1.6. Post-Process Plugins

16.1.6.1. Available Post-Process Plugins
16.1.7. Pre-Query Plugins

16.1.7.1. Available Pre-Query Plugins
16.1.8. Pre-Federated-Query Plugins

16.1.8.1. Available Pre-Federated-Query Plugins

16.1.9. Post-Query Plugins
16.1.9.1. Available Post-Query Plugins
16.1.10. Post-Federated-Query Plugins

16.1.10.1. Available Post-Federated-Query Plugins

16.1.11. Pre-Resource Plugins

287
287
287
288
288
289
289
289
289
290
290
290
291
291
291
291
292
303
303
304
304
304
304
305
306
306
307
308
308
308
308
309
309
309
309
310
310
310

16.1.11.1. Available Pre-Resource Plugins
16.1.12. Post-Resource Plugins
16.1.12.1. Available Post-Resource Plugins
16.1.13. Pre-Create Storage Plugins
16.1.13.1. Available Pre-Create Storage Plugins
16.1.14. Post-Create Storage Plugins
16.1.14.1. Available Post-Create Storage Plugins
16.1.15. Pre-Update Storage Plugins
16.1.15.1. Available Pre-Update Storage Plugins
16.1.16. Post-Update Storage Plugins
16.1.16.1. Available Post-Update Storage Plugins
16.1.17. Pre-Subscription Plugins
16.1.17.1. Available Pre-Subscription Plugins
16.1.18. Pre-Delivery Plugins
16.1.18.1. Available Pre-Delivery Plugins
16.2. Catalog Plugin Details
16.2.1. Catalog Backup Plugin
16.2.1.1. Installing the Catalog Backup Plugin
16.2.1.2. Configuring the Catalog Backup Plugin
16.2.1.3. Usage Limitations of the Catalog Backup Plugin
16.2.2. Catalog Metrics Plugin
16.2.2.1. Related Components to the Source Metrics Plugin
16.2.2.2. Installing the Catalog Metrics Plugin
16.2.2.3. Configuring the Catalog Metrics Plugin
16.2.3. Catalog Policy Plugin
16.2.3.1. Installing the Catalog Policy Plugin
16.2.3.2. Configuring the Catalog Policy Plugin
16.2.4. Checksum Plugin
16.2.4.1. Installing the Checksum Plugin
16.2.4.2. Configuring the Checksum Plugin
16.2.5. Client Info Plugin
16.2.5.1. Related Components to the Client Info Plugin
16.2.5.2. Installing the Client Info Plugin
16.2.5.3. Configuring the Client Info Plugin
16.2.6. Content URI Access Plugin
16.2.6.1. Installing the Content URI Access Plugin
16.2.6.2. Configuring the Content URI Access Plugin

16.2.7. Event Processor

310
310
311
311
311
311
311
311
312
312
312
312
312
312
313
313
313
313
313
313
314
314
314
314
314
314
314
314
315
315
315
315
315
315
315
315
315
316

16.2.7.1. Installing the Event Processor
16.2.7.2. Configuring the Event Processor
16.2.7.3. Usage Limitations of the Event Processor
16.2.8. Expiration Date Pre-Ingest Plugin
16.2.8.1. Installing the Expiration Date Pre-Ingest Plugin
16.2.8.2. Configuring the Expiration Date Pre-Ingest Plugin
16.2.9. Filter Plugin
16.2.9.1. Installing the Filter Plugin
16.2.9.2. Configuring the Filter Plugin
16.2.10. GeoCoder Plugin
16.2.10.1. Installing the GeoCoder Plugin
16.2.10.2. Configuring the GeoCoder Plugin
16.2.11. Historian Policy Plugin
16.2.11.1. Installing the Historian Policy Plugin
16.2.11.2. Configuring the Historian Policy Plugin
16.2.12. Identification Plugin
16.2.12.1. Installing the Identification Plugin
16.2.12.2. Configuring the Identification Plugin
16.2.13. JPEG2000 Thumbnail Converter
16.2.13.1. Installing the JPEG2000 Thumbnail Converter
16.2.13.2. Configuring the JPEG2000 Thumbnail Converter
16.2.14. Metacard Attribute Security Policy Plugin
16.2.14.1. Installing the Metacard Attribute Security Policy Plugin
16.2.15. Metacard Backup File Storage Provider
16.2.15.1. Installing the Metacard Backup File Storage Provider
16.2.15.2. Configuring the Metacard Backup File Storage Provider
16.2.16. Metacard Backup S3 Storage Provider
16.2.16.1. Installing the Metacard S3 File Storage Provider
16.2.16.2. Configuring the Metacard S3 File Storage Provider
16.2.17. Metacard Groomer
16.2.17.1. Installing the Metacard Groomer
16.2.17.2. Configuring the Metacard Groomer
16.2.18. Metacard Ingest Network Plugin
16.2.18.1. Related Components to the Metacard Ingest Network Plugin
16.2.18.2. Installing the Metacard Ingest Network Plugin
16.2.18.3. Configuring the Metacard Ingest Network Plugin
16.2.18.3.1. Useful Attributes
16.2.18.4. Usage Limitations of the Metacard Ingest Network Plugin

316
316
316
316
316
316
317
318
318
318
319
319
319
319
319
319
319
319
320
320
320
320
321
321
321
321
321
321
322
322
322
323
323
323
323
323
324
324

16.2.19. Metacard Resource Size Plugin
16.2.19.1. Installing the Metacard Resource Size Plugin
16.2.19.2. Configuring the Metacard Resource Size Plugin
16.2.20. Metacard Validity Filter Plugin

16.2.20.1. Related Components to the Metacard Validity Filter Plugin

16.2.20.2. Installing the Metacard Validity Filter Plugin
16.2.21. Metacard Validity Marker
16.2.21.1. Related Components to the Metacard Validity Marker
16.2.21.2. Installing Metacard Validity Marker
16.2.21.3. Configuring Metacard Validity Marker
16.2.21.4. Using Metacard Validity Marker
16.2.22. Operation Plugin
16.2.22.1. Installing the Operation Plugin
16.2.22.2. Configuring the Operation Plugin
16.2.23. Point of Contact Policy Plugin
16.2.23.1. Related Components to Point of Contact Policy Plugin
16.2.23.2. Installing the Point of Contact Policy Plugin
16.2.23.3. Configuring the Point of Contact Policy Plugin
16.2.24. Processing Post-Ingest Plugin
16.2.24.1. Related Components to Processing Post-Ingest Plugin
16.2.24.2. Installing the Processing Post-Ingest Plugin
16.2.24.3. Configuring the Processing Post-Ingest Plugin
16.2.25. Registry Policy Plugin
16.2.25.1. Installing the Registry Policy Plugin
16.2.25.2. Configuring the Registry Policy Plugin
16.2.26. Resource URI Policy Plugin
16.2.26.1. Installing the Resource URI Policy Plugin
16.2.26.2. Configuring the Resource URI Policy Plugin
16.2.27. Resource Usage Plugin
16.2.27.1. Installing the Resource Usage Plugin
16.2.27.2. Configuring the Resource Usage Plugin
16.2.28. Security Audit Plugin
16.2.28.1. Installing the Security Audit Plugin
16.2.29. Security Logging Plugin
16.2.29.1. Installing Security Logging Plugin
16.2.29.2. Enhancing the Security Log
16.2.30. Security Plugin
16.2.30.1. Installing the Security Plugin

325
325
325
325
325
325
325
326
326
326
326
326
326
326
326
327
327
327
327
327
327
327
327
327
327
328
328
328
328
328
328
329
329
329
329
329
329
329

16.2.30.2. Configuring the Security Plugin
16.2.31. Source Metrics Plugin
16.2.31.1. Related Components to the Source Metrics Plugin
16.2.31.2. Installing the Source Metrics Plugin
16.2.31.3. Configuring the Source Metrics Plugin
16.2.32. Tags Filter Plugin
16.2.32.1. Related Components to Tags Filter Plugin
16.2.32.2. Installing the Tags Filter Plugin
16.2.32.3. Configuring the Tags Filter Plugin
16.2.33. Video Thumbnail Plugin
16.2.33.1. Installing the Video Thumbnail Plugin
16.2.33.2. Configuring the Video Thumbnail Plugin
16.2.34. Workspace Access Plugin
16.2.34.1. Related Components to The Workspace Access Plugin
16.2.34.2. Installing the Workspace Access Plugin
16.2.34.3. Configuring the Workspace Access Plugin
16.2.35. Workspace Pre-Ingest Plugin
16.2.35.1. Related Components to The Workspace Pre-Ingest Plugin
16.2.35.2. Installing the Workspace Pre-Ingest Plugin
16.2.35.3. Configuring the Workspace Pre-Ingest Plugin
16.2.36. Workspace Sharing Policy Plugin
16.2.36.1. Related Components to The Workspace Sharing Policy Plugin
16.2.36.2. Installing the Workspace Sharing Policy Plugin
16.2.36.3. Configuring the Workspace Sharing Policy Plugin
16.2.37. XML Attribute Security Policy Plugin
16.2.37.1. Installing the XML Attribute Security Policy Plugin
17. Data
17.1. Metacards
17.1.1. Metacard Type
17.1.1.1. Default Metacard Type and Attributes
17.1.1.2. Extensible Metacards
17.1.2. Metacard Type Registry
17.1.3. Attributes
17.1.3.1. Attribute Types
17.1.3.1.1. Attribute Format
17.1.3.1.2. Attribute Naming Conventions
17.1.3.2. Result
17.1.4. Creating Metacards

329
330
330
330
330
330
330
330
330
330
331
331
331
331
331
331
332
332
332
332
332
332
332
332
333
333
333
333
334
334
334
335
336
336
336
337
337
337

17.1.4.1. Limitations
17.1.4.2. Processing Metacards
17.1.4.3. Basic Types
18. Operations
19. Resources
19.1. Content Item
19.1.1. Retrieving Resources
19.1.1.1. BinaryContent
19.1.2. Retrieving Resource Options
19.1.3. Storing Resources
19.2. Resource Components
19.3. Resource Readers
19.3.1. URL Resource Reader

19.3.1.1. Installing the URL Resource Reader
19.3.1.2. Configuring Permissions for the URL Resource Reader
19.3.1.3. Configuring the URL Resource Reader

19.3.2. Using the URL Resource Reader
19.4. Resource Writers
20. Queries
20.1. Filters
20.1.1. FilterBuilder API
20.1.2. Boolean Operators
20.1.3. Attribute
20.1.4. XPath
21. Metrics
21.1. Metrics Collection Application
21.1.1. Installing Metrics Collection
21.1.2. Configuring Metrics Collection
21.1.3. Catalog Metrics
21.1.4. Source Metrics
21.2. Metrics Reporting Application
21.2.1. Metrics Aggregate Reports
21.2.2. Viewing Metrics
22. Action Framework
22.1. Action Providers
23. Asynchronous Processing Framework
24. Eventing

24.1. Eventing Components

338
338
338
339
340
341
341
342
342
343
343
344
344
345
345
345
345
346
346
346
347
347
348
348
348
349
349
349
349
351
352
353
355
355
356
356
359
360

25. Migration API
25.1. The Migration API Interfaces and Classes
25.1.1. Migratable
25.1.2. OptionalMigratable
25.1.3. MigrationContext
25.1.4. ExportMigrationContext
25.1.5. ImportMigrationContext
25.1.6. MigrationEntry
25.1.7. ExportMigrationEntry
25.1.8. ImportMigrationEntry
25.1.9. MigrationOperation
25.1.10. MigrationReport
25.1.11. MigrationMessage
25.1.12. MigrationException
25.1.13. MigrationWarning
25.1.14. MigrationInformation
25.1.15. MigrationSuccessfullnformation
26. Security Framework
26.1. Subject
26.1.1. Security Manager
26.1.2. Realms
26.1.2.1. Authenticating Realms
26.1.2.2. Authorizing Realms
26.2. Security Core
26.2.1. Security Core API
26.2.1.1. Installing the Security Core API
26.2.1.2. Configuring the Security Core API
26.2.2. Security Core Implementation
26.2.2.1. Installing the Security Core Implementation
26.2.2.2. Configuring the Security Core Implementation
26.2.3. Security Core Commons
26.2.3.1. Configuring the Security Core Commons
26.3. Security IdP
26.4. Security Encryption
26.4.1. Security Encryption API
26.4.1.1. Installing Security Encryption API
26.4.1.2. Configuring the Security Encryption API

26.4.2. Security Encryption Implementation

360
361
362
363
363
364
364
365
365
366
367
367
368
368
368
369
369
369
369
369
370
370
370
372
372
372
372
372
373
373
373
373
373
373
374
374
374
374

26.4.2.1. Installing Security Encryption Implementation

26.4.2.2. Configuring Security Encryption Implementation

26.4.3. Security Encryption Commands

26.4.3.1. Installing the Security Encryption Commands

26.4.3.2. Configuring the Security Encryption Commands

26.5. Security LDAP
26.5.1. Embedded LDAP Server
26.5.1.1. Installing the Embedded LDAP Server
26.5.1.2. Configuring the Embedded LDAP
26.5.1.3. Connecting to Standalone LDAP Servers
26.5.1.4. Embedded LDAP Configuration
26.5.1.5. Schemas
26.5.1.6. Starting and Stopping the Embedded LDAP
26.5.1.7. Limitations of the Embedded LDAP
26.5.1.8. External Links for the Embedded LDAP
26.5.1.9. LDAP Administration
26.5.1.10. Downloading the Admin Tools
26.5.1.11. Using the Admin Tools
26.6. Security PDP
26.6.1. Security PDP AuthZ Realm
26.6.1.1. Configuring the Security PDP AuthZ Realm
26.6.2. Guest Interceptor
26.6.2.1. Installing Guest Interceptor
26.6.2.2. Configuring Guest Interceptor
26.7. Web Service Security Architecture
26.7.1. Securing REST
26.7.2. Securing SOAP
26.7.2.1. SOAP Secure Client
26.7.2.2. Policy-unaware SOAP Client
26.8. Security PEP
26.8.1. Security PEP Interceptor
26.8.1.1. Installing the Security PEP Interceptor
26.8.1.2. Configuring the Security PEP Interceptor
26.9. Filtering
26.10. Expansion Service
26.11. Security Token Service
26.11.1. STS Claims Handlers
26.11.2. Security STS

374
374
374
375
375
375
375
375
375
376
376
377
378
378
379
379
379
379
381
381
382
382
382
382
383
383
385
386
386
387
387
387
387
387
388
392
393
393

26.11.3. Security STS Client Config
26.11.3.1. Installing the Security STS Client Config
26.11.3.2. Configuring the Security STS Client Config
26.11.4. External/WS-S STS Support
26.11.4.1. Security STS Address Provider
26.11.5. Security STS LDAP Login
26.11.5.1. Installing the Security STS LDAP Login
26.11.5.2. Configuring the Security STS LDAP Login
26.11.6. Security STS LDAP Claims Handler
26.11.6.1. Installing Security STS LDAP Claims Handler

26.11.6.2. Configuring the Security STS LDAP Claims Handler

26.11.7. Security STS Server
26.11.7.1. Installing the Security STS Server
26.11.7.2. Configuring the Security STS Server
26.11.8. Security STS Service
26.11.8.1. Installing the Security STS Realm
26.11.8.2. Configuring the Security STS Realm
26.12. Federated Identity
27. Developing DDF Components
27.1. Developing Complementary Catalog Frameworks
27.1.1. Simple Catalog API Implementations
27.1.2. Use of the Whiteboard Design Pattern
27.1.3. Recommendations for Framework Development
27.1.4. Catalog Framework Reference
27.1.4.1. Methods
27.1.4.1.1. Create, Update, and Delete Methods
27.1.4.1.2. Query Methods
27.1.4.1.3. Resource Methods
27.1.4.1.4. Source Methods
27.1.4.1.5. Transform Methods
27.1.4.2. Implementing Catalog Methods
27.1.4.3. Dependency Injection
27.1.4.4. OSGi Service Registry
27.2. Developing Metacard Types
27.2.1. Metacard Type Definition File
27.3. Developing Global Attribute Validators
27.3.1. Global Attribute Validators File
27.4. Developing Attribute Types

393
393
393
394
394
394
394
394
395
395
395
396
397
397
397
398
398
398
399
399
400
400
400
401
401
401
401
402
402
402
402
403
404
404
404
407
407
411

27.4.1. Attribute Type Definition File 411

27.5. Developing Default Attribute Types 413
27.5.1. Default Attribute Values 413
27.6. Developing Attribute Injections 415
27.6.1. Attribute Injection Definition 415
27.7. Developing Endpoints 417
27.8. Developing Input Transformers 418
27.8.1. Create an XML Input Transformer using SaxEventHandlers 419
27.8.2. Create an Input Transformer Using Apache Camel 421
27.8.2.1. Input Transformer Design Pattern (Camel) 421
27.8.3. Input Transformer Boot Service Flag 422
27.9. Developing Metacard Transformers 422
27.9.1. Creating a New Metacard Transformer 423
27.10. Developing Query Response Transformers 424
27.11. Developing Sources 425
27.11.1. Implement a Source Interface 425
27.11.1.1. Developing Catalog Providers 426
27.11.1.2. Developing Federated Sources 427
27.11.1.3. Developing Connected Sources 427
27.11.1.4. Exception Handling 428
27.11.1.4.1. Exception Examples 428
27.11.1.4.2. External Resources for Developing Sources 428

27.12. Developing Catalog Plugins 428
27.12.1. Implementing Catalog Plugins 430
27.12.1.1. Catalog Plugin Failure Behavior 430
27.12.1.2. Implementing Pre-Ingest Plugins 430
27.12.1.3. Implementing Post-Ingest Plugins 431
27.12.1.4. Implementing Pre-Query Plugins 431
27.12.1.5. Implementing Post-Query Plugins 432
27.12.1.6. Implementing Pre-Delivery Plugins 432
27.12.1.7. Implementing Pre-Subscription Plugins 432
27.12.1.8. Implementing Pre-Resource Plugins 433
27.12.1.9. Implementing Post-Resource Plugins 433
27.12.1.10. Implementing Policy Plugins 433
27.12.1.11. Implementing Access Plugins 434
27.13. Developing Token Validators 434
27.14. Developing STS Claims Handlers 435

27.14.1. Example Requests and Responses for SAML Assertions 443

27.14.2. BinarySecurityToken (CAS) SAML Security Token Samples 443

27.14.3. UsernameToken Bearer SAML Security Token Sample 450
27.14.4. X.509 PublicKey SAML Security Token Sample 455
27.14.5. X.509 PublicKey SAML Security Token Sample 458
27.15. Developing Registry Clients 463
27.16. Developing Resource Readers 463
27.16.1. Creating a New ResourceReader 463
27.16.1.1. Implementing the ResourceReader Interface 464
27.16.1.2. retrieveResource 464
27.16.1.3. Implement retrieveResource() 464
27.16.1.4. getSupportedSchemes 465
27.16.1.5. Export to OSGi Service Registry 466
27.17. Developing Resource Writers 466
27.17.1. Create a New ResourceWriter 466
27.18. Developing Filters 468
27.18.1. Units of Measure 468
27.18.2. Filter Examples 469
27.18.2.1. Contextual Searches 470
27.18.2.1.1. Tree View of Creating Filters 470
27.18.2.1.2. XML View of Creating Filters 471
27.18.2.2. Fuzzy Operations 471
27.18.3. Parsing Filters 472
27.18.3.1. Interpreting a Filter to Create SQL 472
27.18.3.2. Interpreting a Filter to Create XQuery 473
27.18.3.2.1. FilterAdapter/Delegate Process for Figure Parsing 474
27.18.3.2.2. FilterVisitor Process for Figure Parsing 474
27.18.4. Filter Profile 475
27.18.4.1. Role of the OGC Filter 475
27.18.4.2. Catalog Filter Profile 475
27.18.4.2.1. Comparison Operators 476
27.18.4.2.2. Logical Operators 477
27.18.4.2.3. Temporal Operators 477
27.18.4.2.4. Spatial Operators 478

27.19. Developing Filter Delegates 479
27.19.1. Creating a New Filter Delegate 479
27.19.1.1. Implementing the Filter Delegate 479
27.19.1.2. Throwing Exceptions 479

27.19.1.3. Using the Filter Adapter 479

27.19.1.4. Filter Support
27.20. Developing Action Components
27.20.1. Action Component Naming Convention
27.20.1.1. Action Component Taxonomy
27.21. Developing Query Options
27.21.1. Evaluating a query
27.21.2. Commons-DDF Utilities
27.21.2.1. FuzzyFunction
27.21.2.2. XPathHelper

27.22. Configuring Managed Service Factory Bundles
27.22.1. Configuring Managed Service Factory Bundles

27.22.1.1. File Format
27.23. Developing XACML Policies
27.23.1. XACML Policy Attributes
27.23.2. XACML Policy Subject
27.23.3. XACML Policy Resource
27.23.4. Using a XACML Policy

27.24. Assuring Authenticity of Bundles and Applications

27.24.1. Prerequisites
27.24.2. Signing a JAR/KAR
27.24.2.1. Verifying a JAR/KAR
27.25. WES Services
27.26. JSON Definition Files
27.26.1. Definition File Format
27.26.2. Deploying Definition Files
27.27. Developing Subscriptions
27.27.1. Subscription Lifecycle
27.27.1.1. Creation
27.27.1.2. Evaluation
27.27.1.3. Update Evaluation
27.27.1.4. Durability
27.27.2. Creating a Subscription
27.27.2.1. Event Processing and Notification
27.27.2.1.1. Using DDF Implementation
27.27.2.2. Delivery Method
27.28. Contributing to Documentation
27.28.1. Editing Existing Documentation
27.28.2. Adding New Documentation Content

480
481
482
482
483
483
484
484
484
484
484
485
488
489
489
489
489
489
489
490
490
491
493
493
493
494
494
494
494
494
494
495
495
495
496
496
497
498

27.28.3. Creating a New Documentation Template
27.28.4. Extending Documentation in Downstream Distributions
28. Development Guidelines
28.1. Contributing
28.2. OSGi Basics
28.2.1. Packaging Capabilities as Bundles
28.2.1.1. Creating a Bundle
28.2.1.1.1. Bundle Development Recommendations
28.2.1.1.2. Maven Bundle Plugin
28.2.1.2. Third Party and Utility Bundles
28.2.1.3. Deploying a Bundle
28.2.1.4. Verifying Bundle State
28.3. High Availability Guidance
Appendices
Appendix A: Application References
Appendix B: Application Reference
B.1. Admin Application Reference
B.1.1. Admin Application Prerequisites
B.1.2. Installing the Admin Application
B.1.3. Configuring the Admin Application
B.2. Message Broker Application Reference
B.2.1. Prerequisites for Message Broker Application
B.2.2. Installing Message Broker Application
B.2.3. Configuring the Message Broker Application

B.2.3.1. Configuring the Message Broker for a Highly Available Cluster

B.2.3.2. Securing the Message Broker Application
B.2.3.3. Artemis Broker Connection Configuration
B.2.4. Using the Message Broker Application
B.2.4.1. Undelivered Messages Ul
B.2.4.2. Route Manager
B.3. Catalog Application Reference
B.3.1. Catalog Application Prerequisites
B.3.2. Installing the Catalog Application
B.3.3. Configuring the Catalog Application
B.4. GeoWebCache Application Reference
B.4.1. GeoWebCache Application Prerequisites
B.4.2. Installing GeoWebCache
B.4.3. Configuring GeoWebCache

498
498
499
499
499
500
500
500
501
502
502
503
503
504
504
504
504
504
504
504
506
506
506
506
506
509
510
511
511
511
512
512
512
512
533
533
533
534

B.4.3.1. Adding GeoWebCache Layers
B.4.3.2. Editing GeoWebCache Layers
B.4.3.3. Removing GeoWebCache Layers
B.4.3.4. Configuring GWC Disk Quota

B.4.4. Configuring the Standard Search UI for GeoWebCache

B.5. Platform Application Reference

B.5.1. Platform Application Prerequisites

B.5.2. Installing Platform

B.5.3. Configuring the Platform Application
B.6. Registry Application Reference

B.6.1. Registry Prerequisites

B.6.2. Installing Registry

B.6.3. Customizing Registry Fields

B.6.4. Configuring the Registry Application
B.7. Resource Management Application Reference

B.7.1. Resource Management Prerequisites

B.7.2. Installing Resource Management

B.7.3. Configuring the Resource Management Application

B.8. Security Application Reference

B.8.1. Security Prerequisites

B.8.2. Installing Security

B.8.3. Configuring the Security Application
B.9. Solr Catalog Application Reference

B.9.1. Solr Catalog Prerequisites

B.9.2. Installing Solr Catalog

B.9.3. Configuring the Solr Catalog Application
B.10. Spatial Application Reference

B.10.1. Offline Gazetteer Service

B.10.1.1. Spatial Gazetteer Console Commands

B.10.2. Spatial Prerequisites

B.10.3. Installing Spatial

B.10.4. Configuring the Spatial Application
B.11. Search UI Application Reference

B.11.1. Search UI Prerequisites

B.11.2. Installing Search UI

B.11.3. Configuring the Search UI Application

Appendix C: Application Whitelists

C.1. Packages Removed From Whitelist

534
534
534
535
535
536
536
536
536
541
541
541
541
543
546
547
547
547
548
548
548
548
539
539
560
560
560
561
561
562
562
562
579
579
579
579
593
593

C.2. Catalog Whitelist
C.3. Platform Whitelist
C.4. Registry Whitelist
C.5. Security Whitelist
C.6. Solr Catalog Whitelist
C.7. Search UI Whitelist
Appendix D: DDF Dependency List
Appendix E: Hardening Checklist
Appendix F: Metadata Reference
F.1. Common Metadata Attributes
F.2. File Format-specific Attributes
F.2.1. Mp4 Additional Attribute
F.2.2. All File Formats Supported
F.3. Catalog Taxonomy Definitions
F.3.1. Core Attributes
F.3.2. Associations Attributes
F.3.3. Contact Attributes
F.3.4. DateTime Attributes
F.3.5. History Attributes
F.3.6. Location Attributes
F.3.7. Media Attributes
F.3.8. Metacard Attributes
F.3.9. Security Attributes
F.3.10. Topic Attributes
F.3.11. Validation Attributes

595
599
600
600
601
601
602
613
614
614
615
616
616
630
630
633
633
635
635
636
636
638
638
639
640

License

Copyright (c) Codice Foundation.
This work is licensed under a Creative Commons Attribution 4.0 International License.

This document last updated: 2019-08-13.

http://creativecommons.org/licenses/by/4.0

Introduction

1. About DDF

1.1. Introducing DDF

Distributed Data Framework (DDF) is a free and open-source common data layer that abstracts
services and business logic from underlying data structures to enable rapid integration of new data
sources.

Licensed under LGPL , DDF is an interoperability platform that provides secure and scalable
discovery and retrieval from a wide array of disparate sources.

DDF is:

* a flexible and modular integration framework.
* built to "unzip and run" even when scaled to large enterprise systems.

« primarily focused on data integration, enabling clients to insert, query, and transform information
from disparate data sources via the DDF Catalog.

1.2. Component Applications

DDF is comprised of several modular applications, to be installed or uninstalled as needed.

Admin Application

Enhances administrative capabilities when installing and managing DDF. It contains various
services and interfaces that allow administrators more control over their systems.

Catalog Application

Provides a framework for storing, searching, processing, and transforming information. Clients
typically perform local and/or federated query, create, read, update, and delete (QCRUD) operations
against the Catalog. At the core of the Catalog functionality is the Catalog Framework, which routes
all requests and responses through the system, invoking additional processing per the system
configuration.

Platform Application

The Core application of the distribution. The Platform application contains the fundamental
building blocks to run the distribution.

Security Application

Provides authentication, authorization, and auditing services for the DDF. It is both a framework
that developers and integrators can extend and a reference implementation that meets security

http://www.gnu.org/licenses/gpl.html

requirements.

Solr Catalog Application

Includes the Solr Catalog Provider, an implementation of the Catalog Provider using Apache Solr
[as a data store.

Spatial Application
Provides OGC services, such as CSW 2, WCS 7, WFS &, and KML .

Search Ul

Allows a user to search for records in the local Catalog (provider) and federated sources. Results of
the search are returned and displayed on a globe or map, providing a visual representation of
where the records were found.

2. Documentation Guide

The DDF documentation is organized by audience.

Core Concepts

This introduction section is intended to give a high-level overview of the concepts and capabilities
of DDF.

Administrators

Managing | Administrators will be installing, maintaining, and supporting existing applications. Use
this section to prepare, install, configure, run, and monitor DDF.

Users

Using | Users interact with the system to search data stores. Use this section to navigate the various
user interfaces available in DDF.

Integrators

Integrating | Integrators will use the existing applications to support their external frameworks.
This section will provide details for finding, accessing and using the components of DDF.

Developers

Developing | Developers will build or extend the functionality of the applications.
2.1. Documentation Conventions
The following conventions are used within this documentation:

2.1.1. Customizable Values

Many values used in descriptions are customizable and should be changed for specific use cases. These

http://lucene.apache.org/solr/
http://www.opengeospatial.org/standards/cat
http://www.opengeospatial.org/standards/wcs
http://www.opengeospatial.org/standards/wfs
http://www.opengeospatial.org/standards/kml

values are denoted by < >, and by [[]] when within XML syntax. When using a real value, the
placeholder characters should be omitted.

2.1.2. Code Values

Java objects, lines of code, or file properties are denoted with the Monospace font style. Example:
ddf.catalog.CatalogFramework

2.1.3. Hyperlinks

Some hyperlinks (e.g., /admin) within the documentation assume a locally running installation of DDF.
Simply change the hostname if accessing a remote host.

Hyperlinks that take the user away from the DDF documentation are marked with an external link (&)
icon.

2.2. Support

Questions about DDF should be posted to the ddf-users forum ' or ddf-developers forum &, where
they will be responded to quickly by a member of the DDF team.

2.2.1. Documentation Updates

The most current DDF documentation is available at DDF Documentation 4.

3. Core Concepts

This introduction section is intended to give a high-level overview of the concepts and capabilities of
DDF.

3.1. Introduction to Search

DDF provides the capability to search the Catalog for metadata. There are a number of different types
of searches that can be performed on the Catalog, and these searches are accessed using one of several
interfaces. This section provides a very high-level overview of introductory concepts of searching with
DDF. These concepts are expanded upon in later sections.

Search Types

There are four basic types of metadata search. Additionally, any of the types can be combined to create
a compound search.

Text Search

A text search is used when searching for textual information. It searches all textual fields by default,
although it is possible to refine searches to a text search on a single metadata attribute. Text

https://groups.google.com/d/forum/ddf-users
https://groups.google.com/d/forum/ddf-developers
http://codice.org/ddf/Documentation-versions.html

searches may use wildcards, logical operators, and approximate matches.

Spatial Search

A spatial search is used for Area of Interest (AOI) searches. Polygon and point radius searches are
supported.

Temporal Search

A temporal search finds information from a specific time range. Two types of temporal searches are
supported: relative and absolute. Relative searches contain an offset from the current time, while
absolute searches contain a start and an end timestamp. Temporal searches can use the created or
modified date attributes.

Datatype Search

A datatype search is used to search for metadata based on the datatype of the resource. Wildcards
(*) can be used in both the datatype and version fields. Metadata that matches any of the datatypes
(and associated versions if specified) will be returned. If a version is not specified, then all metadata
records for the specified datatype(s) regardless of version will be returned.

3.2. Introduction to Metadata

In DDF, resources are the data products, files, reports, or documents of interest to users of the system.

Metadata is information about those resources, organized into a schema to make search possible. The
Catalog stores this metadata and allows access to it. Metacards are single instances of metadata,
representing a single resource, in the Catalog. Metacards follow one of several schemas to ensure
reliable, accurate, and complete metadata. Essentially, Metacards function as containers of metadata.

3.3. Introduction to Ingest

Ingest is the process of bringing data products, metadata, or both into the catalog to enable search,
sharing, and discovery. Ingested files are transformed into a neutral format that can be searched
against as well as migrated to other formats and systems. See Ingesting Data for the various methods of
ingesting data.

Upon ingest, a transformer will read the metadata from the ingested file and populate the fields of a
metacard. Exactly how this is accomplished depends on the origin of the data, but most fields (except
id) are imported directly.

3.4. Introduction to Resources

The Catalog Framework can interface with storage providers to provide storage of resources to specific
types of storage, e.g., file system, relational database, XML database. A default file system
implementation is provided by default.

Storage providers act as a proxy between the Catalog Framework and the mechanism storing the
content. Storage providers expose the storage mechanism to the Catalog Framework. Storage plugins
provide pluggable functionality that can be executed either immediately before or immediately after
content has been stored or updated.

Storage providers provide the capability to the Catalog Framework to create, read, update, and delete
resources in the content repository.

See Data Management for more information on specific file types supported by DDF.

3.5. Introduction to the Catalog Framework

The Catalog Framework wires all the Catalog components together.

It is responsible for routing Catalog requests and responses to the appropriate source, destination,
federated system, etc.

Endpoints send Catalog requests to the Catalog Framework. The Catalog Framework then
invokes Catalog Plugins, Transformers, and Resource Components as needed before sending requests
to the intended destination, such as one or more Sources.

The Catalog Framework decouples clients from service implementations and provides integration
points for Catalog Plugins and convenience methods for Endpoint developers.

3.6. Introduction to Federation and Sources

Federation is the ability of the DDF to query other data sources, including other DDFs. By default, the
DDF is able to federate using OpenSearch and CSW protocols. The minimum configuration necessary to
configure those federations is a query address.

Federation enables constructing dynamic networks of data sources that can be queried individually or
aggregated into specific configuration to enable a wider range of accessibility for data and data
products.

Federation provides the capability to extend the DDF enterprise to include Remote Sources, which may
include other instances of DDF. The Catalog handles all aspects of federated queries as they are sent to
the Catalog Provider and Remote Sources, as they are processed, and as the query results are returned.
Queries can be scoped to include only the local Catalog Provider (and any Connected Sources), only
specific Federated Sources, or the entire enterprise (which includes all local and Remote Sources). If
the query is federated, the Catalog Framework passes the query to a Federation Strategy, which is
responsible for querying each federated source that is specified. The Catalog Framework is also
responsible for receiving the query results from each federated source and returning them to the
client in the order specified by the particular federation strategy used. After the federation strategy
handles the results, the Catalog returns them to the client through the Endpoint. Query results are
returned from a federated query as a list of metacards. The source ID in each metacard identifies
the Source from which the metacard originated.

http://www.opensearch.org/Home
http://www.opengeospatial.org/standards/cat

3.7. Introduction to Events and Subscriptions

DDF can be configured to receive notifications whenever metadata is created, updated, or deleted in
any federated sources. Creations, updates, and deletions are collectively called Events, and the process
of registering to receive them is called Subscription.

The behavior of these subscriptions is consistent, but the method of configuring them is specific to the
Endpoint used.

3.8. Introduction to Registries

The Registry Application serves as an index of registry nodes and their information, including service
bindings, configurations and supplemental details.

Each registry has the capability to serve as an index of information about a network of registries
which, in turn, can be used to connect across a network of DDFs and other data sources. Registries
communicate with each other through the CSW endpoint and each registry node is converted into a
registry metacard to be stored in the catalog. When a registry is subscribed to or published from, it
sends the details of one or more nodes to another registry.

Identity Node

The Registry is initially comprised of a single registry node, refered to as the identity, which
represents the registry’s primary configuration.

Subscription

Subscribing to a registry is the act of retreiving its information, specifically its identity information
and any other registries it knows about. By default, subscriptions are configured to check for
updates every 30 seconds.

Publication

Publishing is the act of sending a registry’s information to another registry. Once publication has
occurred, any updates to the local registry will be pushed out to the registries that have been
published to.

3.9. Introduction to Endpoints

Endpoints expose the Catalog Framework to clients using protocols and formats that the clients
understand.

Endpoint interface formats encompass a variety of protocols, including (but not limited to):

¢ SOAP Web services
e RESTful services

. JMS

« JSON

* OpenSearch

The endpoint may transform a client request into a compatible Catalog format and then transform the
response into a compatible client format. Endpoints may use Transformersto perform these
transformations. This allows an endpoint to interact with Source(s) that have different interfaces. For
example, an OpenSearch Endpoint can send a query to the Catalog Framework, which could then
query a federated source that has no OpenSearch interface.

Endpoints are meant to be the only client-accessible components in the Catalog.

3.10. Introduction to High Availability

DDF can be made highly available. In this context, High Availability is defined as the ability for DDF to
be continuously operational with very little down time.

In a Highly Available Cluster, DDF has failover capabilities when a DDF node fails.

The word "node", from a High Availability perspective, is one of the two DDF systems
running within the Highly Available Cluster. Though there are multiple systems
running with the Highly Available Cluster, it is still considered a single DDF from a
user’s perspective or from other DDFs' perspectives.

NOTE

This setup consists of a Solr Cloud instance, 2 DDF nodes connected to that Solr Cloud, and a failover
proxy that sits in front of those 2 nodes. One of the DDF nodes will be arbitrarily chosen to be the
active node, and the other will be the "hot standby" node. It is called a "hot standby" node because it is
ready to receive traffic even though it’s not currently receiving any. The failover proxy will route all
traffic to the active node. If the active node fails for any reason, the standby node will become active
and the failover proxy will route all traffic to the new active node. See the below diagrams for more
detail.

DDF
(active) 1’
[Proxy L J Solr Cloud
(standby) J_’

Highly Available Cluster

Solr Cloud

DDF

J
L} (active)

Highly Available Cluster (after failover)

There are special procedures for initial setup and configuration of a highly available DDF. See High
Availability Initial Setup and High Availability Configuration for those procedures.

3.10.1. High Availability Supported Capabilities

Only these capabilities are supported in a Highly Available Cluster. For a detailed list of features, look
at the ha. json file located in <DDF_HOME>/etc/profiles/.

* User Interfaces:
o Simple
o Intrigue
 Catalog:
o Validation
o Plug-ins: Expiration Date, JPEG2000, Metacard Validation, Schematron, Versioning
o Transformers
o Content File System Storage Provider
* Platform:
o Actions
o Configuration
> Notifications
o Persistence
o Security: Audit, Encryption
» Solr
 Security
* Thirdy Party:
o CXF

o Camel

* Endpoints:
o REST Endpoint
o CSW Endpoint

o OpenSearch Endpoint

3.11. Standards Supported by DDF

DDF incorporates support for many common Service, Metadata, and Security standards, as well as
many common Data Formats.

3.11.1. Catalog Service Standards

Service standards are implemented within Endpoints and/or Sources. Standards marked
Experimental are functional and have been tested, but are subject to change or removal during the
incubation period.

Table 1. Catalog Service Standards Included with DDF

Standard (public standards linked Endpoints Sources Status
where available)
Open Geospatial Consortium Catalog CSW Endpoint Geographic Supported
Service for the Web (OGC CSW) MetaData
2.0.1/2.02& extensible markup
language (GMD)
CSW Source
OGC Web Feature Service WES WES 1.0 Source, Supported
1.0/1.1/2.0 & WES 1.1 Source,
WES 2.0 Source
OGC WPS 2.0 & Web Processing Service WPS Endpoint Experimental
OpenSearch & OpenSearch OpenSearch Source Supported
Endpoint
File Transfer Protocol (FTP) &2 FTP Endpoint Supported
Atlassian Confluence® Atlassian Supported
Confluence®

Federated Source

3.11.2. Data Formats

DDF has extended capabilities to extract rich metadata from many common data formats if those
attributes are populated in the source document. See appendix for a complete list of file formats that
can be ingested with limited metadata coverage. Metadata standards use XML or JSON, or both.

10

http://www.opengeospatial.org/standards/cat
http://www.opengeospatial.org/standards/cat
http://www.opengeospatial.org/standards/cat
http://www.opengeospatial.org/standards/wfs
http://www.opengeospatial.org/standards/wfs
http://www.opengeospatial.org/standards/wps
http://www.opensearch.org/Home
https://tools.ietf.org/html/rfc959

Table 2. Data Formats Included in DDF

Format

Word Document

File Extensions

doc, docx, dotx, docm

Additional Metadata Attributes Available (if
populated)

Standard attributes

PowerPoint ppt, pptx Standard attributes

Excel xls, xlsx Standard attributes

PDF pdf Standard attributes

GeoPDF pdf Standard attributes

geojson json, js Standard attributes

html htm, html Standard attributes

jpeg jpeg, jpeg2000 Standard attributes and additional Media
attributes

mp2 mp2, MPEG2 Standard attributes and additional Media
attributes

mp4 mp4 Standard attributes, additional Media attributes,
and mp4 additional attribute

WMV wmy Standard attributes

AVIs avi Standard attributes

Keyhole Markup kml Standard attributes

Language (KML) &

Dublin Core & n/a Standard attributes

3.11.3. Map Formats

Intrigue includes capabilities to support custom map layer providers as well as support for several
popular map layer providers.

Some provider types are currently only supported by the 2D OpenLayers & map and some only by the
3D Cesium Gf map.

Table 3. Map Formats Included in DDF

Format 2D Documentation 3D Documentation
Open Street Map OpenLayers & Cesium &
Web Map Service OpenLayers &£ Cesium &
Web Map Tile Service OpenLayers & Cesium &
ArcGIS Map Server OpenLayers &£ Cesium &
Single Tile OpenLayers & Cesium &
Bing Maps OpenLayers & Cesium &
Tile Map Service Cesium &

11

http://www.opengeospatial.org/standards/kml
http://www.opengeospatial.org/standards/kml
http://dublincore.org/
https://openlayers.org
https://cesiumjs.org
https://openlayers.org/en/v4.6.5/apidoc/ol.source.OSM.html
https://cesiumjs.org/releases/1.34/Build/Documentation/createOpenStreetMapImageryProvider.html
https://openlayers.org/en/v4.6.5/apidoc/ol.source.ImageWMS.html
https://cesiumjs.org/releases/1.34/Build/Documentation/WebMapServiceImageryProvider.html
https://openlayers.org/en/v4.6.5/apidoc/ol.source.WMTS.html
https://cesiumjs.org/releases/1.34/Build/Documentation/WebMapTileServiceImageryProvider.html
https://openlayers.org/en/v4.6.5/apidoc/ol.source.XYZ.html
https://cesiumjs.org/releases/1.34/Build/Documentation/ArcGisMapServerImageryProvider.html
https://openlayers.org/en/v4.6.5/apidoc/ol.source.ImageStatic.html
https://cesiumjs.org/releases/1.34/Build/Documentation/SingleTileImageryProvider.html
https://openlayers.org/en/v4.6.5/apidoc/ol.source.BingMaps.html
https://cesiumjs.org/releases/1.34/Build/Documentation/BingMapsImageryProvider.html
https://cesiumjs.org/releases/1.34/Build/Documentation/createTileMapServiceImageryProvider.html

Format 2D Documentation 3D Documentation

Google Earth Cesium &

3.11.4. Security Standards
DDF makes use of these security standards to protect the system and interactions with it.

Table 4. Attribute Stores Provided by DDF

Standard Support Status
Lightweight Directory Access Protocol (LDAP/LDAPS) & Supported
Azure Active Directory & Supported

Table 5. Cryptography Standards Provided by DDF

Standard Support Status
Transport Layer Security (TLS) v1.1 & v1.2 & Supported
Cipher Suites & Supported

 TLS_DHE_RSA WITH_AES_128_GCM_SHA256
 TLS_DHE_RSA WITH_AES_128_CBC_SHA256
 TLS_DHE RSA WITH_AES_128_CBC_SHA

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

TLS_ECDHE_RSA _WITH_AES_128_GCM_SHA256

Table 6. Transport Protocols Provided by DDF

Standard Support Status

HyperText Transport Protocol (HTTP) / HyperText Transport Supported
Protocol Secure (HTTPS) &

File Transfer Protocol (FTP) & / File Transfer Protocol Secure (FTPS) Supported
&

Lightweight Directory Access (LDAP/LDAPS) & Supported

Table 7. Single Sign On Standards Provided by DDF

Standard Support Status
SAML 2.0 Web SSO Profile &£ Supported
SAML Enhanced Client or Proxy (ECP) & Supported

Central Authentication Service (CAS) & Supported

12

https://cesiumjs.org/releases/1.34/Build/Documentation/GoogleEarthImageryProvider.html
https://tools.ietf.org/html/rfc4510
https://docs.microsoft.com/en-us/azure/active-directory/active-directory-whatis
https://tools.ietf.org/html/rfc5246
https://docs.oracle.com/javase/8/docs/technotes/guides/security/SunProviders.html#SupportedCipherSuites
https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc2818
https://tools.ietf.org/html/rfc2818
https://tools.ietf.org/html/rfc959
https://www.ietf.org/rfc/rfc4217.txt
https://tools.ietf.org/html/rfc4510
https://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf
http://docs.oasis-open.org/security/saml/Post2.0/saml-ecp/v2.0/saml-ecp-v2.0.html
https://apereo.github.io/cas/5.1.x/protocol/CAS-Protocol.html

Table 8. Security and SSO Endpoints Provided by DDF

Standard Support Status
Security Token Service (STS) & Supported
Identity Provider (IdP) &2 Supported
Service Provider (SP) & Supported

Table 9. Authentication Standards Provided by DDF

Standard Support Status
Public Key Infrastructure (PKI) &£ Supported
Basic Authentication &£ Supported
SAML & Supported
Central Authentication Service (CAS) & Supported

4. Quick Start Tutorial

This quick tutorial will enable install, configuring and using a basic instance of DDF.

This tutorial is intended for setting up a test, demonstration, or trial installation of DDF.

NOTE
For complete installation and configuration steps, see Installing.

These steps will demonstrate:

@ Prerequisites.
& Quick Install of DDF.

@ Ingesting Data.

4.1. Installing (Quick Start)

These are the basic requirements to set up the environment to run a DDF.

For security reasons, DDF cannot be started from a user’s home directory. If

WARNING . .
attempted, the system will automatically shut down.

4.1.1. Quick Install Prerequisites

Hardware Requirements (Quick Install)

* Atleast 4096 MB of memory for DDF.

o This amount can be increased to support memory-intensive applications. See Memory
Considerations.

13

http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/ws-trust-1.4-spec-ed-01.html#_Toc162064951
https://www.oasis-open.org/committees/download.php/21111/saml-glossary-2.0-os.html#Identity+Provider
https://www.oasis-open.org/committees/download.php/21111/saml-glossary-2.0-os.html#Service&20;Provider
http://www.oasis-pki.org/resources/techstandards/
https://www.ietf.org/rfc/rfc2617.txt
https://www.oasis-open.org/standards#samlv2.0
https://apereo.github.io/cas/5.1.x/protocol/CAS-Protocol.html

Java Requirements (Quick Install)

Follow the instructions outlined here: Java Requirements.

Check System Time

WARNING Prior to installing DDF, ensure the system time is accurate to prevent federation
issues.

4.1.2. Quick Install of DDF

1. Download the DDF zip file (.

2. Install DDF by unzipping the zip file.

Windows Zip Utility Warning

The Windows Zip implementation, which is invoked when a user double-clicks
on a zip file in the Windows Explorer, creates a corrupted installation. This is a
consequence of its inability to process long file paths. Instead, use the java jar
command line utility to unzip the distribution (see example below) or use a
third party utility such as 7-Zip.

WARNING Note: If and only if a JDK is installed, the jar command may be used; otherwise,
another archiving utility that does not have issue with long paths should be
installed

Use Java to Unzip in Windows(Replace <PATH_TO_JAVA> with correct path and
<JAVA_VERSION> with current version.)

"<PATH_TO_JAVA>\jdk<JAVA_VERSION>\bin\jar.exe" xf ddf-2.16.1.zip

3. This will create an installation directory, which is typically created with the name and version of
the application. This installation directory will be referred to as <DDF_HOME>. (Substitute the actual
directory name.)

4. Start DDF by running the <DDF_HOME>/bin/ddf script (or ddf.bat on Windows).
5. Startup may take a few minutes.

a. Optionally, a system:wait-for-ready command (aliased to wfr) can be used to wait for startup to
complete.

6. The Command Console will display.

Command Console Prompt

ddf@local>

14

https://github.com/codice/ddf/releases

4.1.3. Quick Install of DDF on a remote headless server

If DDF is being installed on a remote server that has no user interface, the hostname will need to be
updated in the configuration files and certificates.

NOTE Do not replace all instances of localhost, only those specified.

Configuring with a new hostname

1.

Update the <DDF_HOME>/etc/custom.system.properties file. The entry
org.codice.ddf.system.hostname=1ocalhost should be updated to
org.codice.ddf.system.hostname=<HOSTNAME>.

Update the <DDF_HOME>/etc/users.properties file. Change the localhost=1localhost[::*] entry to
<HOSTNAME>=<HOSTNAME>. (Keep the rest of the line as is.)

Update the <DDF_HOME>/etc/users.attributes file. Change the "localhost" entry to "<HOSTNAME>".
From the console go to <DDF_HOME>/etc/certs and run the appropriate script.

a. *NIX: sh CertNew.sh -cn <hostname> -san "DNS:<hostname>".

b. Windows: CertNew -cn <hostname> -san "DNS:<hostname>".

Proceed with starting the system and continue as usual.

Configuring with an IP address

1.

Update the <DDF_HOME?>/etc/custom.system.properties file. The entry
org.codice.ddf.system.hostname=1ocalhost should be updated to
org.codice.ddf.system.hostname=<IP>.

Update the <DDF_HOME>/etc/users.properties file. Change the localhost=1localhost[:*] entry to

<[P>=<IP>. (Keep the rest of the line as is.)
Update the <DDF_HOME>/etc/users.attributes file. Change the "localhost" entry to "<IP>".
From the console go to <DDF_HOME>/etc/certs and run the appropriate script.

a. *NIX: sh CertNew.sh -cn <IP> -san "IP:<IP>".

b. Windows: CertNew -cn <IP> -san "IP:<IP>".

Proceed with starting the system and continue as usual.

15

File Descriptor Limit on Linux

* For Linux systems, increase the file descriptor limit by editing /etc/sysctl.conf to
include:

fs.file-max = 6815744

NOTE
* (This file may need permissions changed to allow write access).

» For the change to take effect, a restart is required.

1. *nix Restart Command

init 6

4.2. Certificates (Quick Start)

DDF comes with a default keystore that contains certificates. This allows the distribution to be
unzipped and run immediately. If these certificates are sufficient for testing purposes, proceed to
Configuring (Quick Start).

To test federation using 2-way TLS, the default keystore certificates will need to be replaced, using
either the included Demo Certificate Authority or by Creating Self-signed Certificates.

If the installer was used to install the DDF and a hostname other than "localhost" was given, the user
will be prompted to upload new trust/key stores.

If the hostname is localhost or, if the hostname was changed after installation, the default certificates
will not allow access to the DDF instance from another machine over HTTPS (now the default for many
services). The Demo Certificate Authority will need to be replaced with certificates that use the fully-
qualified hostname of the server running the DDF instance.

4.2.1. Demo Certificate Authority (CA)

DDF comes with a populated truststore containing entries for many public certificate authorities, such
as Go Daddy and Verisign. It also includes an entry for the DDF Demo Root CA. This entry is a self-
signed certificate used for testing. It enables DDF to run immediately after unzipping the distribution.
The keys and certificates for the DDF Demo Root CA are included as part of the DDF distribution. This
entry must be removed from the truststore before DDF can operate securely.

4.2.1.1. Creating New Server Keystore Entry with the CertNew Scripts

To create a private key and certificate signed by the Demo Certificate Authority, use the provided
scripts. To use the scripts, run them out of the <DDF_HOME>/etc/certs directory.

16

*NIX Demo CA Script

For *NIX, use the CertNew. sh script.
sh CertNew.sh [-cn <cn>|-dn <dn>] [-san <tag:name,tag:name,::>]

where:
» <cn> represents a fully qualified common name (e.g. "<FQDN>", where <FQDN> could be
something like cluster.yoyo.com)

» <dn> represents a distinguished name as a comma-delimited string (e.g. "c=US, st=California,
o=Yoyodyne, 1=San Narciso, cn=<FQDN>")

» <tag:name,tag:name,:'> represents optional subject alternative names to be added to the
generated certificate (e.g. "DNS:<FQDN>,DNS:nodel.<FQDN>DNS:node2.<FQDN>"). The
format for subject alternative names is similar to the OpenSSL X509 configuration format.
Supported tags are:

o email - email subject
o URI - uniformed resource identifier
o RID - registered id

DNS - hostname

o

o

IP - ip address (V4 or V6)

o

dirName - directory name

If no arguments specified on the command line, hostname -f is used as the common-name for the
certificate.

17

Windows Demo CA Script
For Windows, use the CertNew.cmd script.
CertNew (-cn <cn>|-dn <dn>) [-san "<tag:name,tag:name,:->"]

where:
» <cn> represents a fully qualified common name (e.g. "<FQDN>", where <FQDN> could be
something like cluster.yoyo.com)

» <dn> represents a distinguished name as a comma-delimited string (e.g. "c=US, st=California,
o=Yoyodyne, 1=San Narciso, cn=<FQDN>")

» <tag:name,tag:name,:'> represents optional subject alternative names to be added to the
generated certificate (e.g. "DNS:<FQDN>,DNS:nodel.<FQDN>DNS:node2.<FQDN>"). The
format for subject alternative names is similar to the OpenSSL X509 configuration format.
Supported tags are:

o email - email subject
o URI - uniformed resource identifier
o RID - registered id

DNS - hostname

o

o

IP - ip address (V4 or V6)

o

dirName - directory name

The CertNew scripts:

* Create a new entry in the server keystore.

Use the hostname as the fully qualified domain name (FQDN) when creating the certificate.

Adds the specified subject alternative names if any.

Use the Demo Certificate Authority to sign the certificate so that it will be trusted by the default
configuration.

To install a certificate signed by a different Certificate Authority, see Managing Keystores.

After this proceed to Updating Settings After Changing Certificates.

If the server’s fully qualified domain name is not recognized, the name may need

WARNING
to be added to the network’s DNS server.

4.2.1.2. Dealing with Lack of DNS

In some cases DNS may not be available and the system will need to be configured to work with IP

18

addresses.

Options can be given to the CertNew Scripts to generate certs that will work in this scenario.

*NIX
From <DDF_HOME>/etc/certs/ run:

sh CertNew.sh -cn <IP> -san "IP:<IP>"

Windows
From <DDF_HOME>/etc/certs/ run:

CertNew -cn <IP> -san "IP:<IP>"

After this proceed to Updating Settings After Changing Certificates, and be sure to use the IP address
instead of the FQDN.

4.2.2. Creating Self-Signed Certificates

If using the Demo CA is not desired, DDF supports creating self-signed certificates with a self-signed
certificate authority. This is considered an advanced configuration.

Creating self-signed certificates involves creating and configuring the files that contain the certificates.
In DDF, these files are generally Java Keystores (jks) and Certificate Revocation Lists (crl). This
includes commands and tools that can be used to perform these operations.

For this example, the following tools are used:

* openssl
o Windows users can use: openssl for windows.
» The standard Java keytool certificate management utility.

* Portecle can be used for keytool operations if a GUI if preferred over a command line interface.
4.2.2.1. Creating a custom CA Key and Certificate

The following steps demonstrate creating a root CA to sign certificates.

1. Create a key pair.
$> openssl genrsa -aes128 -out root-ca.key 1024

2. Use the key to sign the CA certificate.
$> openssl req -new -x509 -days 3650 -key root-ca.key -out root-ca.crt

19

https://code.google.com/p/openssl-for-windows/downloads/detail?name=openssl-0.9.8k_X64.zip&can=2&q=
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/keytool.html
http://portecle.sourceforge.net/

4.2.2.2. Sign Certificates Using the custom CA

The following steps demonstrate signing a certificate for the tokenissuer user by a CA.
1. Generate a private key and a Certificate Signing Request (CSR).
$> openssl req -newkey rsa:1024 -keyout tokenissuer.key -out tokenissuer.req
2. Sign the certificate by the CA.

$> openssl ca -out tokenissuer.crt -infiles tokenissuer.req

These certificates will be used during system configuration to replace the default certificates.

4.2.3. Updating Settings After Changing Certificates

After changing the certificates it will be necessary to update the system user and the
org.codice.ddf.system.hostname property with the value of either the FQDN or the IP.

FQDNs should be used wherever possible. In the absence of DNS, however, IP addresses can be used.

Replace localhost with the FQDN or the IP in <DDF_HOME>/etc/users.properties,
<DDF_HOME>/etc/users.attributes, and <DDF_HOME>/etc/custom.system.properties.

On linux this can be accomplished with a single command: sed -i
TIP 's/localhost/<FQDN|IP>/g' <DDF_HOME>/etc/users.*
<DDF_HOME>/etc/custom.system.properties

Finally, restart the DDF instance. Navigate to the Admin Console to test changes.

4.3. Configuring (Quick Start)

Set the configurations needed to run DDF.

1. In a browser, navigate to the Admin Console at https:/{FQDN}:{PORT}/admin.
a. The Admin Console may take a few minutes to start up.
2. Enter the default username of admin and the password of admin.
3. Follow the installer prompts for a standard installation.
a. Click start to begin the setup process.
b. Configure guest claims attributes or use defaults.
1. See Configuring Guest Access for more information about the Guest user.
ii. All users will be automatically granted these permissions.

ili. Guest users will not be able to ingest data with more restrictive markings than the
guest claims.

iv. Any data ingested that has more restrictive markings than these guest claims will not

20

be visible to Guest users.
c. Select Standard Installation.
1. This step may take several minutes to complete.

d. On the System Configuration page, configure any port or protocol changes desired and add any
keystores/truststores needed.

1. See Certificates (Quick Start) for more details.
e. Click Next
f. Click Finish

4.4. Ingesting (Quick Start)

Now that DDF has been configured, ingest some sample data to demonstrate search capabilities.

This is one way to ingest into the catalog, for a complete list of the different methods, see Ingesting
Data.

4.4.1. Ingesting Sample Data

1. Download a sample valid GeoJson file here .
2. Navigate in the browser to Intrigue at https:/{FQDN}:{PORT}/search/catalog.

3.
Select the Menu icon (E) in the upper left corner

4. Select Upload.
5. Drag and drop the sample file or click to navigate to it.

6. Select Start to begin upload.
NOTE XML metadata for text searching is not automatically generated from GeoJson fields.

Querying from Intrigue (https:/{FQDN}:{PORT}/search/catalog) will return the record for the file
ingested:

1.
Select the Menu icon (E)and return to Workspaces.
2. Search for the ingested data.

The sample data was selected as an example of well-formed metadata. Other data can

NOTE .
and should be used to test other usage scenarios.

21

https://codice.atlassian.net/wiki/download/attachments/1179756/geojson_valid.json?version=1&modificationDate=1368249436010&api=v2

Managing

Administrators will be installing, maintaining, and supporting existing applications. Use this section to
prepare, install, configure, run, and monitor a DDF.

5. Securing

Security is an important consideration for DDF, so it is imperative to update configurations away from
the defaults to unique, secure settings.

Securing DDF Components

DDF is enabled with an Insecure Defaults Service which will warn users/admins
if the system is configured with insecure defaults.

IMPORTANT o _ o o
A banner is displayed on the admin console notifying "The system is insecure

because default configuration values are in use."

A detailed view is available of the properties to update.

Security concerns will be highlighted in the configuration sections to follow.

5.1. Security Hardening

Security Hardening

To harden DDF, extra security precautions are required.

Where available, necessary migitations to harden an installation of DDF are called out in the
following configuration steps.

Refer to the Hardening Checklist for a compilation of these mitigations.

NOTE The security precautions are best performed as configuration is taking place, so
hardening steps are integrated into configuration steps.

This is to avoid setting an insecure configuration and having to revisit during hardening. Most

configurations have a security component to them, and important considerations for hardening are

labeled as such during configuration as well as provided in a checklist format.

Some of the items on the checklist are performed during installation and others during configuration.
Steps required for hardening are marked as Required for Hardening and are collected here for
convenience. Refer to the checklist during system setup.

22

5.2. Auditing

* Required Step for Security Hardening

Audit logging captures security-specific system events for monitoring and review. DDF provides an
Audit Plugin that logs all catalog transactions to the security.log. Information captured includes user
identity, query information, and resources retrieved.

Follow all operational requirements for the retention of the log files. This may include using
cryptographic mechanisms, such as encrypted file volumes or databases, to protect the integrity of
audit information.

NOTE The Audit Log default location is <DDF_HOME>/data/log/security.log

Audit Logging Best Practices

For the most reliable audit trail, it is recommended to configure the operational
environment of the DDF to generate alerts to notify adminstrators of:

NOTE N
* auditing software/hardware errors

» failures in audit capturing mechanisms

* audit storage capacity (or desired percentage threshold) being reached or exceeded.

The security audit logging function does not have any configuration for audit
WARNING reduction or report generation. The logs themselves could be used to generate
such reports outside the scope of DDF.

5.2.1. Enabling Fallback Audit Logging
* Required Step for Security Hardening

In the event the system is unable to write to the security.log file, DDF must be configured to fall back
to report the error in the application log:
* edit <DDF_HOME>/etc/org.ops4j.pax.logging.cfg

o uncomment the line (remove the # from the beginning of the line) for log4j2
(org.ops4j.pax.logging.log4j2.config.file = ${karaf.etc}/1log4j2.xml)

o delete all subsequent lines

If you want to change the location of your systems security backup log from the default location:
<DDF_HOME>/data/log/securityBackup.log, follow the next two steps:

* edit <DDF_HOME>/security/configurations.policy

o find "Security-Hardening: Backup Log File Permissions"

23

o below grant codeBase "file:/pax-logging-log4j2" add the path to the directory containing the
new log file you will create in the next step.

o edit <DDF_HOME>/etc/1og4j2.xml
- find the entry for the securityBackup appender. (see example)
o change value of filename and prefix of filePattern to the name/path of the desired failover

security logs

securityBackup Appender Before

<RollingFile name="securityBackup" append="true" ignoreExceptions="false"
fileName="${sys:karaf.log}/securityBackup.log"
filePattern="${sys:karaf.log}/securityBackup.log-%d{yyyy-MM-dd-HH}-
%i.1log.gz">

securityBackup Appender After

<RollingFile name="securityBackup" append="true" ignoreExceptions="false"
fileName="<NEW_LOG_FILE>"
filePattern="<NEW_LOG_FILE>-%d{yyyy-MM-dd-HH}-%i.log.gz">

If the system is unable to write to the security.log file on system startup, fallback
WARNING logging will be unavailable. Verify that the security.log file is properly configured
and contains logs before configuring a fall back.

6. Installing

Set up a complete, secure instance of DDF. For simplified steps used for a testing, development, or
demonstration installation, see the DDF Quick Start.

Although DDF can be installed by any user, it is recommended for security

IMPORTANT . .
reasons to have a non-root user execute the DDF installation.

Hardening guidance assumes a Standard installation.
NOTE
Adding other components does not have any security/hardening implications.

6.1. Installation Prerequisites

For security reasons, DDF cannot be started from a user’s home directory. If

WARNING
attempted, the system will automatically shut down.

24

These are the system/environment requirements to configure prior to an installation.

The DDF process or user under which the DDF process runs must have permission to
create and write files in the directories where the Solr cores are installed, If this
permission is missing, DDF will not be able to create new Solr cores and the system will
not function correctly.

NOTE

6.1.1. Hardware Requirements

Table 10. Using the Standard installation of the DDF application:

Minimum and Recommended Requirements for DDF Systems

Criteria Minimum Recommended
CPU Dual Core 1.6 GHz Quad Core 2.6 GHz
RAM 8 GB 32 GB

Disk Space 40 GB 80 GB

Video Card — WebGL capable GPU
Additional Software JRE 8 x64 JDK 8 x64

"The amount of RAM can be increased to support memory-intensive applications. See Memory
Considerations

Operating Systems

DDF has been tested on the following operating systems and with the following browsers. Other
operating systems or browsers may be used but have not been officially tested.

Table 11. Tested Operating Systems and Browsers

Operating Systems Browsers

Windows Server 2012 R2 Internet Explorer 11
Windows Server 2008 R2 Service Pack 1 Microsoft Edge
Windows 10 Firefox

Linux CentOS 7 Chrome

Debian 9

6.1.2. Java Requirements
For a runtime system:

* JRE 8 x64 @ or OpenJDK 8 JRE must be installed.

* The JRE_HOME environment variable must be set to the locations where the JRE is installed

25

https://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html
https://openjdk.java.net/install

For a development system:

* JDK8 must be installed.
* The JAVA_HOME environment variable must be set to the location where the JDK is installed.
1. Install/Upgrade to Java 8 x64 J2SE 8 SDK
a. The recommended version is 8u60 or later.
b. Java version must contain only number values.
2. Install/Upgrade to JDKS .

3. Set the JAVA_HOME environment variable to the location where the JDK is installed.

NOTE Prior to installing DDF, ensure the system time is accurate to prevent federation issues.

*NIX Unset JAVA_HOME if Previously Set
NOTE Unset JAVA_HOME if it is already linked to a previous version of the JRE:

unset JAVA_HOME
If JDK was installed:

Setting JAVA_HOME variable
Replace <JAVA_VERSION> with the version and build number installed.

1. Open a terminal window(*NIX) or command prompt (Windows) with administrator privileges.

2. Determine Java Installation Directory (This varies between operating system versions).

Find Java Path in *NIX

which java

Find Java Path in Windows

The path to the JDK can vary between versions of Windows, so manually verify the path
under:

C:\Program Files\Java\jdk<M.m.p_build>

3. Copy path of Java installation to clipboard. (example: /usr/java/<JAVA_VERSION>)
4. Set JAVA_HOME by replacing <PATH_TO_JAVA> with the copied path in this command:

26

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/8u60-relnotes-2620227.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Setting JAVA_HOME on *NIX

JAVA_HOME=<PATH_TO_JAVA><JAVA_ VERSION>
export JAVA_HOME

Setting JAVA_HOME on Windows

set JAVA_HOME=<PATH_TO_JAVA><JAVA_VERSION>
setx JAVA_HOME "<PATH_TO_JAVA><JAVA_VERSION>"

Adding JAVA_HOME to PATH Environment Variable on Windows

setx PATH "%PATH%;%JAVA_HOME%\bin"

5. Restart or open up a new Terminal (shell) or Command Prompt to verify JAVA_HOME was set
correctly. It is not necessary to restart the system for the changes to take effect.

*NIX

echo $JAVA_HOME

Windows

echo %JAVA_HOME%

If JRE was installed:

Setting JRE_HOME variable
Replace <JAVA_VERSION> with the version and build number installed.

1. Open a terminal window(*NIX) or command prompt (Windows) with administrator privileges.

2. Determine Java Installation Directory (This varies between operating system versions).

Find Java Path in *NIX

which java

Find Java Path in Windows

The path to the JRE can vary between versions of Windows, so manually verify the path
under:

27

28

C:\Program Files\Java\jre<M.m.p_build>

3. Copy path of Java installation to clipboard. (example: /usr/java/<JAVA_VERSION>)
4. Set JRE_HOME by replacing <PATH_TO_JAVA> with the copied path in this command:

Setting JRE_HOME on *NIX

JRE_HOME=<PATH_TO_JAVA><JAVA_VERSION>
export JRE_HOME

Setting JRE_HOME on Windows

set JRE_HOME=<PATH_TO_JAVA><JAVA_VERSION>
setx JRE_HOME "<PATH_TO_JAVA><JAVA_VERSION>"

Adding JRE_HOME to PATH Environment Variable on Windows

setx PATH "%PATH%;%JRE_HOME%\bin"

5. Restart or open up a new Terminal (shell) or Command Prompt to verify JRE_HOME was set
correctly. It is not necessary to restart the system for the changes to take effect.

*NIX

echo $JRE_HOME

Windows

echo %JRE_HOME%

File Descriptor Limit on Linux

* For Linux systems, increase the file descriptor limit by editing /etc/sysctl.conf to
include:

fs.file-max = 6815744
NOTE

» For the change to take effect, a restart is required.

*Nix Restart Command

init 6

6.2. Installing With the DDF Distribution Zip

Check System Time

WARNING Prior to installing DDF, ensure the system time is accurate to prevent federation
issues.

To install the DDF distribution zip, perform the following:

1. Download the DDF zip file (.

2. After the prerequisites have been met, change the current directory to the desired install directory,
creating a new directory if desired. This will be referred to as <DDF_HOME>.

Windows Pathname Warning

WARNING Do not use spaces in directory or file names of the <DDF_HOME> path. For
example, do not install in the default Program Files directory.

Example: Create a Directory (Windows and *NIX)

mkdir new_installation

a. Use a Non-root User on *NIX. (Windows users skip this step)

It is recommended that the root user create a new install directory that can be owned by a non-
root user (e.g., DDF_USER). This can be a new or existing user. This DDF_USER can now be used
for the remaining installation instructions.

b. Create a new group or use an existing group (e.g., DDF_GROUP) (Windows users skip this step)

29

https://github.com/codice/ddf/releases

3.

Example: Add New Group on *NIX

groupadd DDF_GROUP

Example: Switch User on *NIX
chown DDF_USER:DDF_GROUP new_installation

su - DDF_USER

Change the current directory to the location of the zip file (ddf-2.16.1.zip).

*NIX (Example assumes DDF has been downloaded to a CD/DVD)

cd /home/user/cdrom

Windows (Example assumes DDF has been downloaded to the D drive)

cd D:\

Copy ddf-2.16.1.zip to <DDF_HOME>.

*NIX

cp ddf-2.16.1.zip <DDF_HOME>

Windows

copy ddf-2.16.1.zip <DDF_HOME>

Change the current directory to the desired install location.

*NIX or Windows

cd <DDF_HOME>

6. The DDF zip is now located within the <DDF_HOME>. Unzip ddf-2.16.1.zip.

30

*NIX

unzip ddf-2.16.1.zip

Windows Zip Utility Warning

The Windows Zip implementation, which is invoked when a user double-clicks
on a zip file in the Windows Explorer, creates a corrupted installation. This is a
consequence of its inability to process long file paths. Instead, use the java jar
command line utility to unzip the distribution (see example below) or use a
third party utility such as 7-Zip.

WARNING Use Java to Unzip in Windows(Replace <PATH_TO_JAVA> with correct path and

<JAVA_VERSION> with current version.)

"<PATH_TO_JAVA>\jdk<JAVA_VERSION>\bin\jar.exe" xf ddf-2.16.1.zip

The unzipping process may take time to complete. The command prompt will
stop responding to input during this time.

6.2.1. Configuring Operating Permissions and Allocations

Restrict access to sensitive files by ensuring that the only users with access privileges are
administrators.

Within the <DDF_HOME>, a directory is created named ddf-2.16.1. This directory will be referred to in the
documentation as <DDF_HOME>.

1. Do not assume the deployment is from a trusted source; verify its origination.

2. Check the available storage space on the system to ensure the deployment will not exceed the
available space.

3. Set maximum storage space on the <DDF_HOME>/deploy and <DDF_HOME>/system directories to restrict
the amount of space used by deployments.

6.2.1.1. Setting Directory Permissions

» Required Step for Security Hardening

DDF relies on the Directory Permissions of the host platform to protect the integrity of the DDF during
operation. System administrators MUST perform the following steps prior to deploying bundles added
to the DDF.

The system administrator must restrict certain directories to ensure that the
application (user) cannot access restricted directories on the system. For
example the DDFUSER should have read-only access to <DDF_HOME>, except for the
sub-directories etc, data, solr and instances.

IMPORTANT

31

32

Setting Directory Permissions on Windows

Set directory permissions on the <DDF_HOME>; all sub-directories except etc, data, and instances;
and any directory intended to interact with the DDF to protect from unauthorized access.

1.

8.

0.

2
3
4.
5
6

Right-click on the <DDF_HOME> directory.

. Select Properties -> Security -> Advanced.

. Under Owner, select Change.

Enter Creator Owner into the Enter the Object Name... field.

. Select Check Names.

. Select Apply.

a. If prompted Do you wish to continue, select Yes.

Remove all Permission Entries for any groups or users with access to <DDF_HOME> other
than System, Administrators, and Creator Owner.

a. Note: If prompted with a message such as: You can’t remove X because this object is
inheriting permissions from its parent. when removing entries from the Permission
entries table:

i Select Disable Inheritance.
ii. Select Convert Inherited Permissions into explicit permissions on this object.
iii. Try removing the entry again.

Select the option for Replace all child object permission entries with inheritable
permission entries from this object.

Close the Advanced Security Settings window.

Setting Directory Permissions on *NIX
Set directory permissions to protect the DDF from unauthorized access.

* Change ownership of <DDF_HOME>
- chown -R ddf-user <DDF_HOME>
» Create instances sub-directory if does not exist
o mkdir -p <DDF_HOME>/instances
» Change group ownership on sub-directories
o chgrp -R DDFGROUP <DDF_HOME>/etc <DDF_HOME>/data <DDF_HOME>/instances <DDF_HOME>/solr
* Change group permissions
o chmod -R g-w <DDF_HOME>/etc <DDF_HOME>/data <DDF_HOME>/instances <DDF_HOME>/solr
* Remove permissions for other users

- chmod -R o-rwx <DDF_HOME>/etc <DDF_HOME>/data <DDF_HOME>/instances

6.2.1.2. Configuring Memory Allocation for the DDF Java Virtual Machine

The amount of memory allocated to the Java Virtual Machine host DDF by the operating system can be
increased by updating the setenv script:

Setenv Scripts: *NIX

<DDF_HOME>/bin/setenv

Update the JAVA_OPTS -Xmx value
<DDF_HOME>/bin/setenv-wrapper.conf

Update the wrapper.java.additional -Xmx value

Setenv Scripts: Windows

<DDF_HOME>/bin/setenv.bat

Update the JAVA_OPTS -Xmx value
<DDF_HOME>/bin/setenv-windows-wrapper.conf
Update the wrapper.java.additional -Xmx value

6.2.1.3. Enabling JMX

By default, DDF prevents connections to JMX because the system is more secure when JMX is not
enabled. However, many monitoring tools require a JMX connection to the Java Virtual Machine. To
enable JMX, update the setenv script:

33

Setenv Scripts: *NIX

<DDF_HOME>/bin/setenv

Remove -XX:+DisableAttachMechanism from JAVA_OPTS
<DDF_HOME>/bin/setenv-wrapper.conf

Comment out the -XX:+DisableAttachMechanism line and re-number remainder lines
appropriately

Setenv Scripts: Windows

<DDF_HOME>/bin/setenv.bat

Remove -XX:+DisableAttachMechanism from JAVA_OPTS
<DDF_HOME>/bin/setenv-windows-wrapper.conf

Comment out the -XX:+DisableAttachMechanism line and re-number remainder lines
appropriately

6.2.1.4. Configuring Memory for the Solr Server

This section applies only to configurations that manage the lifecycle of the Solr server.

NOTE
It does not apply to Solr Cloud configurations.

The Solr server consumes large amount of memory when it ingests documents. If the Solr server runs
out of memory, it terminates its process. To allocate more memory to the Solr server, increase the
value of the solr.mem property.

6.2.2. Managing Keystores and Certificates

* Required Step for Security Hardening
DDF uses certificates in two ways:

1. Ensuring the privacy and integrity of messages sent or received over a network.

2. Authenticating an incoming user request.

To ensure proper configuration of keystore, truststore, and certificates, follow the options below
according to situation.

34

Provided with
server keystore?

ves| 1o

Provided with private key
& signed certificate for No

the server? —>

Replace default keystore
:rcith provided file and 4

it
custom.system.properties
file with filenames, Yes
passwords, file types

Create a private key entry

in the serverKeystore file

—p using the provided private
key and signed certificate

l l

The truststore file has ‘ Yes
the proper certificates? J

iNo
Provided with No
rovi wit|
trust keystore? ——;

[3] Yesl Yes
4]

v

Provided with CA
certificate?

Replace truststore with

provided file
Import the CA certificate
into the serverTrustStore
No and serverKeystore files

Server keystore includes
the CA certificate used

to sign the server's Yes
certificate?

Configuring Certificates Workflow
Jump to the steps referenced in the diagram:

Certificate Workflow Steps
1. Adding an Existing Keystore

2. Creating a New Keystore/Truststore with an Existing Certificate and Private Key

3. Adding an Existing Truststore
4. Creating a Server Keystore

a. Creating a Server Truststore

6.2.2.1. Managing Keystores

Certificates, and sometimes their associated private keys, are stored in keystore files. DDF includes two

35

default keystore files, the server key store and the server trust store. The server keystore holds the
certificates and private keys that DDF uses to identify itself to other nodes on the network. The
truststore holds the certificates of nodes or other entities that DDF needs to trust.

6.2.2.1.1. Adding an Existing Server Keystore

If provided an existing keystore for use with DDF, follow these steps to replace the default keystore.

1. Remove the default keystore at etc/keystores/serverKeystore. jks.
2. Add the desired keystore file to the etc/keystores directory.
3. Edit custom.system.properties file to set filenames and passwords.

a. If using a type of keystore other than jks (such as pkes12), change the
javax.net.ssl.keyStoreType property as well.

4. If the truststore has the correct certificates, restart server to complete configuration.
a. If provided with an existing server truststore, continue to Adding an Existing Server Truststore.

b. Otherwise, create a server truststore.

6.2.2.1.2. Adding an Existing Server Truststore

1. Remove the default truststore at etc/keystores/serverTruststore.jks.
2. Add the desired truststore file to the etc/keystores directory.
3. Edit custom.system.properties file to set filenames and passwords.

a. If using a type of truststore other than jks (such as pkes12), change the
javax.net.ssl.trustStoreType property as well.

If the provided server keystore does not include the CA certificate that was used to sign the server’s
certificate, add the CA certificate into the serverKeystore file.

6.2.2.1.3. Creating a New Keystore/Truststore with an Existing Certificate and Private Key

If provided an existing certificate, create a new keystore and truststore with it.
NOTE DDF requires that the keystore contains both the private key and the CA.

1. Using the private key, certificate, and CA certificate, create a new keystore containing the data from
the new files.

36

cat client.crt >> client.key

openssl pkes12 -export -in client.key -out client.p12

keytool -importkeystore -srckeystore client.pl12 -destkeystore serverKeystore.jks
-srcstoretype pkes12 -alias 1

keytool -changealias -alias 1 -destalias client -keystore serverKeystore.jks

keytool -importcert -file ca.crt -keystore serverKeystore.jks -alias "ca
keytool -importcert -file ca-root.crt -keystore serverKeystore.jks -alias "ca-root"

2. Create the truststore using only the CA certificate. Based on the concept of CA signing, the CA
should be the only entry needed in the truststore.

keytool -import -trustcacerts -alias "ca" -file ca.crt -keystore truststore.jks
keytool -import -trustcacerts -alias "ca-root" -file ca-root.crt -keystore
truststore.jks

3. Create a PEM file using the certificate, as some applications require that format.

openssl x509 -in client.crt -out client.der -outform DER
openssl x509 -in client.der -inform DER -out client.pem -outform PEM

IMPORTANT The localhost certificate must be removed if using a system certificate.

6.2.2.1.4. Updating Key Store / Trust Store via the Admin Console

Certificates (and certificates with keys) can be managed in the Admin Console.

Navigate to the Admin Console.
Select the Security application.
Select the Certificates tab.

Add and remove certificates and private keys as necessary.

SR

Restart DDF.

The default trust store and key store files for DDF included in etc/keystores use
IMPORTANT self-signed certificates. Self-signed certificates should never be used outside of
development/testing areas.

This view shows the alias (name) of every certificate in the trust store and the key store. It also displays
if the entry includes a private key ("Is Key") and the encryption scheme (typically "RSA" or "EC").

This view allows administrators remove certificates from DDF’s key and trust stores. It also allows
administrators to import certificates and private keys into the keystores with the "+" button. The

37

import function has two options: import from a file or import over HTTPS. The file option accepts a
Java Keystore file or a PKCS12 keystore file. Because keystores can hold many keys, the import dialog
asks the administrator to provide the alias of the key to import. Private keys are typically encrypted
and the import dialog prompts the administrator to enter the password for the private Kkey.
Additionally, keystore files themselves are typically encrypted and the dialog asks for the keystore
("Store") password.

The name and location of the DDF trust and key stores can be changed by editing the system properties
files, etc/custom.system.properties. Additionally, the password that DDF uses to decrypt (unlock) the
key and trust stores can be changed here.

DDF assumes that password used to unlock the keystore is the same password

IMPORTANT . .
that unlocks private keys in the keystore.

The location, file name, passwords and type of the server and trust key stores can be set in the

custom.system.properties file:

1. Setting the Keystore and Truststore Java Properties

javax.net.ssl.keyStore=etc/keystores/serverKeystore.jks
javax.net.ssl.keyStorePassword=changeit
javax.net.ssl.trustStore=etc/keystores/serverTruststore.jks
javax.net.ssl.trustStorePassword=changeit
javax.net.ssl.keyStoreType=jks
javax.net.ssl.trustStoreType=jks

If the server’s fully qualified domain name is not recognized, the name may need to be

NOTE
added to the network’s DNS server.

The DDF instance can be tested even if there is no entry for the FQDN in the DNS. First,
test if the FQDN is already recognized. Execute this command:

ping <FQDN>

TIP
If the command responds with an error message such as unknown host, then modify the

system’s hosts file to point the server’s FQDN to the loopback address. For example:

127.0.0.1 <FQDN>

38

Changing Default Passwords

This step is not required for a hardened system.

* The default password in custom.system.properties for serverKeystore.jks is
changeit. This needs to be modified.

o ds-cfg-key-store-file: ../../keystores/serverKeystore.jks

» ds-cfg-key-store-type: JKS

NOTE » ds-cfg-key-store-pin: password

- cn: JKS

* The default password in custom.system.properties for serverTruststore.jks is
changeit. This needs to be modified.

o ds-cfg-trust-store-file: ../../keystores/serverTruststore.jks
» ds-cfg-trust-store-pin: password
o cn: JKS

6.3. Initial Startup

Run the DDF using the appropriate script.

*NIX

<DDF_HOME>/bin/ddf

Windows

<DDF_HOME>/bin/ddf.bat

The distribution takes a few moments to load depending on the hardware configuration.

TIP To run DDF as a service, see Starting as a Service.

6.3.1. Verifying Startup

At this point, DDF should be configured and running with a Solr Catalog Provider. New features
(endpoints, services, and sites) can be added as needed.

Verification is achieved by checking that all of the DDF bundles are in an Active state (excluding
fragment bundles which remain in a Resolved state).

It may take a few moments for all bundles to start so it may be necessary to wait a few

NOTE
minutes before verifying installation.

39

Execute the following command to display the status of all the DDF bundles:

View Status

ddf@local>list | grep -i ddf

Entries in the Resolved state are expected, they are OSGi bundle fragments.
Bundle fragments are distinguished from other bundles in the command line
console list by a field named Hosts, followed by a bundle number. Bundle
fragments remain in the Resolved state and can never move to the Active state.

WARNING

Example: Bundle Fragment in the Command Line Console

96 | Resolved | 80 | 2.10.0.SNAPSHOT | DDF :: Platform :: PaxWeb :: Jetty Config, Hosts:
90

After successfully completing these steps, the DDF is ready to be configured.

6.3.2. DDF Directory Contents after Installation and Initial Startup

During DDF installation, the major directories and files shown in the table below are created, modified,
or replaced in the destination directory.

Table 12. DDF Directory Contents

Directory Name Description

bin Scripts to start, stop, and connect to DDF.

data The working directory of the system — installed bundles and their data

data/log/ddf.log 1og file for DDF, logging all errors, warnings, and (optionally) debug statements.
This log rolls up to 10 times, frequency based on a configurable setting (default=1
MB)

data{log/i ngest_er Log file for any ingest errors that occur within DDF.
ror.log

?ata/ log/security. Log file that records user interactions with the system for auditing purposes.
0g

deploy Hot-deploy directory — KARs and bundles added to this directory will be hot-
deployed (Empty upon DDF installation)

documentation HTML and PDF copies of DDF documentation.

etc Directory monitored for addition/modification/deletion of .config configuration

files or third party .cfg configuration files.

etc/templates Template .config files for use in configuring DDF sources, settings, etc., by
copying to the etc directory.

40

Directory Name Description

Lib The system’s bootstrap libraries. Includes the ddf-branding.jar file which is used
to brand the system console with the DDF logo.

Licenses Licensing information related to the system.

solr Apache Solr server used when DDF manages Solr

solr/server/logs/s Log file for Solr.

olr.log

system Local bundle repository. Contains all of the JARs required by DDF, including
third-party JARs.

6.3.3. Completing Installation

Upon startup, complete installation from either the Admin Console or the Command Console.

6.3.3.1. Completing Installation from the Admin Console

Upon startup, the installation can be completed by navigating to the Admin Console at
https://{FQDN}:{PORT}/admin.

Internet Explorer 10 TLS Warning

Internet Exlorer 10 users may need to enable TLS 1.2 to access the Admin Console
in the browser.

WARNING
Enabling TLS1.2 in IE10

1. Go to Tools -> Internet Options -> Advanced -> Settings -> Security.

2. Enable TLS1.2.

» Default user/password: admin/admin.

On the initial startup of the Admin Console, a series of prompts walks through essential configurations.
These configurations can be changed later, if needed.

* Click Start to begin.

41

42

Setup Types

DDF is pre-configured with several installation profiles.

» Standard Installation: Recommended. Includes these applications by default:
o Admin
- Catalog
o Platform
o Security
o Solr Catalog
o Spatial
o Intrigue
* Minimum Installation: Includes these applications for a minimum install:
o Admin
o Platform
o Security

* Development: Includes all demo, beta, and experimental applications.

Configure Guest Claim Attributes Page

Setting the attributes on the Configure Guest Claim Attributes page determines the minimum
claims attributes (and, therefore, permissions) available to a guest, or not signed-in, user.

To change this later, see Configuring Guest Claim Attributes.

System Configuration Settings

» System Settings: Set hostname and ports for this installation.

* Contact Info: Contact information for the point-of-contact or administrator for this
installation.

* Certificates: Add PKI certificates for the Keystore and Truststore for this installation.

o For a quick (test) installation, if the hostname/ports are not changed from the defaults,
DDF includes self-signed certificates to use. Do not use in a working installation.

o For more advanced testing, on initial startup of the Admin Console append the string
?dev=true to the url (https:/{FQDN}:{PORT}/admin?dev=true) to auto-generate self-signed
certificates from a demo Certificate Authority(CA). This enables changing hostname and
port settings during initial installation.

= NOTE: ?dev=true generates certificates on initial installation only. Do not use in a
working installation.

o For more information about importing certificate from a Certificate Authority, see
Managing Keystores and Certificates.

Finished Page

Upon successful startup, the Finish page will redirect to the Admin Console to begin further
configuration, ingest, or federation.

The redirect will only work if the certificates are configured in the browser.

NOTE
Otherwise the redirect link must be used.

6.3.3.2. Completing Installation from the Command Console

In order to install DDF from the Command Console, use the command profile:install <profile-name>.
The <profile-name> should be the desired Setup Type in lowercase letters. To see the available profiles,
use the command profile:list.

This only installs the desired Setup Type. There are other components that can be set
NOTE up in the Admin Console Installer that cannot be setup on the Command Console. After
installing the Setup Type, these other components can be set up as described below.

6.3.3.2.1. Configuring Guest Claim Attributes

The Guest Claim Attributes can be configured via the Admin Console after running the profile:install
command. See Configuring Guest Claim Attributes.

43

6.3.3.2.2. System Configuration Settings

System Settings and Contact Info, as described in System Configuration Settings, can be changed in
<DDF_HOME>/etc/custom.system.properties. The certificates must be set up manually as described in
Managing Keystores and Certificates.

NOTE The system will need to be restarted after changing any of these settings.

6.3.4. Firewall Port Configuration

Below is a table listing all of the default ports that DDF uses and a description of what they are used
for. Firewalls will need to be configured to open these ports in order for external systems to
communicate with DDF.

Table 13. Port List

Port Usage description

8993 https access to DDF admin and search web pages.

8101 For administering DDF instances gives ssh access to the administration console.

61616 DDF broker port for JMS messaging over the OpenWire protocol.

5672 DDF broker port for JMS messaging over multiple protocols: Artemis CORE, AMQP and
OpenWire by default .

5671 DDF broker port for JMS messaging over: AMQP by default.

1099 RMI Registry Port

44444 RMI Server Port

8994 Solr Server Port. DDF does not listen on this port, but the Solr process does and it must

be able to receive requests from DDF on this port.

NOTE These are the default ports used by DDF. DDF can be configured to use different ports.

6.3.5. Internet Explorer 11 Enhanced Security Configuration

Below are steps listing all of the changes that DDF requires to run on Internet Explorer 11 and several
additional considerations to keep in mind.

1. In the IE11 Settings > Compatibility View Settings dialog, un-check Display intranet sites in
Compatibility View.

44

2. In the Settings > Internet Options > Security tab, Local intranet zone:

a. Click the Sites > Advanced button, add the current host name to the list, e.g., https://windows-
host-name.domain.edu, and close the dialog.

b. Make sure the security level for the Local intranet zone is set to Medium-low in Custom level---.

i Enable Protected Mode is checked by default, but it may need to be disabled if the above
changes do not fully resolve access issues.

3. Restart the browser.

During installation, make sure to use the host name and not localhost when setting up

NOTE
the DDF’s hostname, port, etc.

6.4. High Availability Initial Setup

This section describes how to complete the initial setup of DDF in a Highly Available Cluster.

Prerequisites

* A failover proxy that can route HTTP traffic according to the pattern described in the Introduction
to High Availability. It is recommended that a hardware failover proxy be used in a production
environment.

¢ Solr Cloud: See the Solr Cloud section for installation and configuration guidance to connect DDF

nodes to Solr Cloud.

Once the prerequisites have been met, the below steps can be followed.

Unless listed in the High Availability Initial Setup Exceptions section, the normal steps

NOTE
can be followed for installing, configuring, and hardening.

1. Install the first DDF node. See the Installation Section.
2. Configure the first DDF node. See the Configuring Section.

3. Optional: If hardening the first DDF node (excluding setting directory permissions). See the
Hardening Section.

4. Export the first DDF node’s configurations, install the second DDF node, and import the exported
configurations on that node. See Reusing Configurations.

5. If hardening, set directory permissions on both DDF nodes. See Setting Directory Permissions.

6.4.1. High Availability Initial Setup Exceptions

These steps are handled differently for the initial setup of a Highly Available Cluster.

45

https://windows-host-name.domain.edu
https://windows-host-name.domain.edu

6.4.1.1. Failover Proxy Integration

In order to integrate with a failover proxy, the DDF node’s system properties (in
<DDF_HOME>/etc/custom.system.properties) must be changed to publish the correct port to external
systems and users. This must be done before installing the first DDF node. See High Availability Initial
Setup.

There are two internal port properties that must be changed to whatever ports the DDF will use on its
system. Then there are two external port properties that must be changed to whatever ports the
failover proxy is forwarding traffic through.

Make sure that the failover proxy is already running and forwarding traffic on the
WARNING chosen ports before starting the DDF. There may be unexpected behavior
otherwise.

In the below example, the failover proxy with a hostname of service.org is forwarding https traffic via
8993 and http traffic via 8181. The DDF node will run on 1111 for https and 2222 for http (on the host
that it’s hosted on). The hostname of the DDF must match the hostname of the proxy.

org.codice.ddf.system.hostname=service.org
org.codice.ddf.system.httpsPort=1111
org.codice.ddf.system.httpPort=2222
org.codice.ddf.system.port=${org.codice.ddf.system.httpsPort}

org.codice.ddf.external.hostname=service.org
org.codice.ddf.external.httpsPort=8993
org.codice.ddf.external.httpPort=8181
org.codice.ddf.external.port=${org.codice.ddf.external.httpsPort}

6.4.1.2. Identical Directory Structures

The two DDF nodes need to be under identical root directories on their corresponding systems. On
Windows, this means they must be under the same drive.

6.4.1.3. Highly Available Security Auditing

A third party tool will have to be used to persist the logs in a highly available manner.

» Edit the <DDF_HOME>/etc/org.ops4j.pax.logging.cfg file to enable log4j2, following the steps in
Enabling Fallback Audit Logging.

* Then put the appropriate log4j2 appender in <DDF_HOME>/etc/1og4j2.xml to send logs to the chosen
third party tool. See Log4j Appenders .

46

https://logging.apache.org/log4j/2.x/manual/appenders.html

6.4.1.4. Shared Storage Provider

The storage provider must be in a location that is shared between the two DDF nodes and must be
highly available. If hardening the Highly Available Cluster, this shared storage provider must be
trusted/secured. One way to accomplish this is to use the default Content File System Storage Provider
and configure it to point to a highly available shared directory.

6.4.1.5. High Availability Certificates

Due to the nature of highly available environments, localhost is not suitable for use as a hostname to
identify the DDF cluster. The default certificate that ships with the product uses localhost as the
common name, so this certificate needs to be replaced. The following describes how to generate a
certificate signed by the DDF Demo Certificate Authority that uses a proper hostname.

NOTE This certificate, and any subsequent certificates signed by the Demo CA, are intended
for testing purposes only, and should not be used in production.

Certificates need to have Subject Alternative Names (SANs) which will include the host for the failover

proxy and for both DDF nodes. A certificate with SANs signed by the Demo CA can be obtained by

navigating to <DDF_HOME>/etc/certs/ and, assuming the proxy’s hostname is service.org, running the

following for UNIX operating systems:

./CertNew.sh -cn service.org -san "DNS:service.org"

or the following for Windows operating systems:

CertNew -cn service.org -san "DNS:service.org"

Systems that use DDF version 2.11.4 or later will automatically get a DNS SAN entry
NOTE matching the CN without the need to specify the -san argument to the CertNew
command.

More customization for certs can be achieved by following the steps at Creating New Server Keystore
Entry with the CertNew Scripts.

6.4.1.6. High Availability Installation Profile

Instead of having to manually turn features on and off, there is a High Availability installation profile.
This profile will not show up in the UI Installer, but can be installed by executing profile:install ha
on the command line instead of stepping through the UI Installer. This profile will install all of the
High Availability supported features.

47

7. Configuring

DDF is highly configurable and many of the components of the system can be configured to use an
included DDF implementation or replaced with an existing component of an integrating system.

Configuration Requirements

Because components can easily be installed and uninstalled, it’s important to
remember that for proper DDF functionality, at least the Catalog API, one Endpoint,
and one Catalog Framework implementation must be active.

NOTE

Configuration Tools

DDF provides several tools for configuring the system. The Admin Console is a useful interface for
configuring applications, their features, and important settings. Alternatively, many configurations can
be updated through console commands entered into the Command Console. Finally, configurations are
stored in configuration files within the <DDF_HOME> directory.

Configuration Outline

While many configurations can be set or changed in any order, for ease of use of this documentation,
similar subjects have been grouped together sequentially.

See Keystores and certificates to set up the certificates needed for messaging integrity and
authentication. Set up Users with security attributes, then configure data attribute handling, and
finally, define the Security Policies that map between users and data and make decisions about access.

Connecting DDF to other data sources, including other instances of DDF is covered in the Configuring
Federation section.

Lastly, see the Configuring for Special Deployments section for guidance on common specialized
installations, such as fanout or multiple identical configurations.

7.1. Admin Console Tutorial

The Admin Console is the centralized location for administering the system. The Admin Console allows
an administrator to configure and tailor system services and properties. The default address for the
Admin Console is https:/{FQDN}:{PORT}/admin.

System Settings Tab

The configuration and features installed can be viewed and edited from the System tab of the Admin
Console.

Managing Federation in the Admin Console

It is recommended to use the Catalog App — Sources tab to configure and manage sites/sources.

Viewing Currently Active Applications from Admin Console

48

DDF displays all active applications in the Admin Console. This view can be configured according to

preference. Either view has an > arrow icon to view more information about the application as
currently configured.

Table 14. Admin Console Views

View Description

Tile View The first view presented is the Tile View, displaying all active applications as
individual tiles.

List View Optionally, active applications can be displayed in a list format by clicking the list
view button.

Application Detailed View

Each individual application has a detailed view to modify configurations specific to that application.

All applications have a standard set of tabs, although some apps may have additional ones with further
information.

Table 15. Individual Application Views
Tab Explanation
Configuration The Configuration tab lists all bundles associated with the application as links to
configure any configurable properties of that bundle.
Managing Features Using the Admin Console

DDF includes many components, packaged as features, that can be installed and/or uninstalled without

restarting the system. Features are collections of OSGi bundles, configuration data, and/or other
features.

Transitive Dependencies

NOTE Features may have dependencies on other features and will auto-install them as
needed.

In the Admin Console, Features are found on the Features tab of the System tab.

1. Navigate to the Admin Console.

2. Select the System tab.

3. Select the Features tab.

4. Uninstalled features are shown with a play arrow under the Actions column.
a. Select the play arrow for the desired feature.
b. The Status will change from Uninstalled to Installed.

5. Installed features are shown with a stop icon under the Actions column.

a. Select the stop icon for the desired feature.

49

b. The Status will change from Installed to Uninstalled.
7.2. Console Command Reference
DDF provides access to a powerful Command Console to use to manage and configure the system.

7.2.1. Feature Commands

Individual features can also be added via the Command Console.

1. Determine which feature to install by viewing the available features on DDF.
ddf@local>feature:list

2. The console outputs a list of all features available (installed and uninstalled). A snippet of the list

output is shown below (the versions may differ):

State Version Name
Description
[installed] [2.16.1] security-handler-api

2.16.1 API for authentication handlers for web applications.

[installed
2.16.1 DDF Security

[uninstalled] [2.16.

2.16.1 DDF Security
[installed
2.16.1 DDF Security

[uninstalled] [2.16.

2.16.1 DDF Security

[uninstalled] [2.16.

2.16.1 DDF Security

[uninstalled] [2.16.

2.16.1 DDF Security

[installed] [2.16.
2.16.1 DDF Security
[installed] [2.16.

2.16.1 DDF Security

[uninstalled] [2.16.

2.16.1 DDF Security

[uninstalled] [2.16.

1 [2.16.

1 [2.16.

1] security-core
Core

1] security-expansion
Expansion
1] security-pdp-authz

PDP.

1] security-pep-serviceauthz

PEP Service AuthZ

1] security-expansion-user-attributes
Expansion User Attributes Expansion

1] security-expansion-metacard-attributes
Expansion Metacard Attributes Expansion
1] security-sts-server

STS.

1] security-sts-realm

STS Realm.

1] security-sts-1ldaplogin

STS JAAS LDAP Login.

1] security-sts-ldapclaimshandler

2.16.1 Retrieves claims attributes from an LDAP store.

1. Check the bundle status to verify the service is started.

ddf@local>list

The console output should show an entry similar to the following:

50

Repository
security-services-app-
security-services-app-
security-services-app-
security-services-app-
security-services-app-
security-services-app-
security-services-app-
security-services-app-
security-services-app-
security-services-app-

security-services-app-

[1171 [Active 11

(<version>)

7.2.1.1. Uninstalling Features from the Command Console

1. Check the feature list to verify the feature is installed properly.
ddf@local>feature:list

State Version

Description
[installed]
[uninstalled]
[installed]
[installed]
[installed]

1. Uninstall the feature.

ddf@local>feature:uninstall ddf-source-dummy

WARNING

1. Verify that the feature has uninstalled properly.
ddf@local>feature:list

State Version

[installed] [2.16.1
[uninstalled] [2.16.1

[installed] [2.16.1
[installed] [2.16.1
[uninstalled] [2.16.1

7.3. Configuration Files

1 [Started] [

1 ddf-core

] ddf-security-common
] ddf-resource-impl
] ddf-source-dummy

1 ddf-core

] ddf-security-common
] ddf-resource-impl
] ddf-source-dummy

:: Catalog :: Source :: Dummy

Repository

Dependencies that were auto-installed by the feature are not automatically
uninstalled.

Repository Description
ddf-2.16.

S O OO O
_) e) -

Many important configuration settings are stored in the <DDF_HOME> directory.

Depending on the environment, it may be easier for integrators and administrators to
NOTE configure DDF using the Admin Console prior to disabling it for hardening purposes.
The Admin Console can be re-enabled for additional configuration changes.

In an environment hardened for security purposes, access to the Admin Console or the Command
Console might be denied and using the latter in such an environment may cause configuration errors.

51

It is necessary to configure DDF (e.g., providers, Schematron rulesets, etc.) using .config files.

A template file is provided for some configurable DDF items so that they can be copied/renamed then

modified with the appropriate settings.

WARNING

If the Admin Console is enabled again, all of the configuration done via .config
files will be loaded and displayed. However, note that the name of the .config file
is not used in the Admin Console. Rather, a universally unique identifier (UUID) is
added when the DDF item was created and displays this UUID in the console (e.g.,
OpenSearchSource.112f298e-26a5-4094-befc-79728f216b9b)

7.3.1. Configuring Global Settings with custom.system.properties

Global configuration settings are configured via the properties file custom.system.properties. These
properties can be manually set by editing this file or set via the initial configuration from the Admin

Console.

NOTE

IMPORTANT

Any changes made to this file require a restart of the system to take effect.

The passwords configured in this section reflect the passwords used to decrypt

passwords of the JKS causes undesirable behavior.

Table 16. Global Settings

Title

Keystore

Keystore
Password

Truststore

Truststore
Password

Keystore
Type
Truststore
Type

52

Property

javax.net.ssl.

re

javax.net.ssl.

rePassword

javax.net.ssl.

tore

javax.net.ssl.
torePassword

javax.net.ssl.

reType

javax.net.ssl.

toreType

Type

Keystore and Truststore Java Properties

keySto String
keySto String

trustS String

trustS String
keySto String

trustS String

Description

Path to server
keystore

Password for
accessing keystore

The trust store used
for SSL/TLS
connections. Path is
relative to
<DDF_HOME>.

Password for server
Truststore

File extension to use
with server keystore

File extension to use
with server
truststore

JKS (Java KeyStore) files. Changing these values without also changing the

Default Value
red

etc/keystores/server yeg
Keystore.jks

changeit Yes

etc/keystores/server yes
Truststore. jks

changeit Yes
jks Yes
jks Yes

Requi

Title

Headless
Mode

Internal
Default
Protocol

Internal Host

Internal
HTTPS Port

Internal
HTTP Port

Property Type

Description Default Value Requi

red

Headless mode

java.awt.headless Boolean

Forcejavatorunin true No
headless mode for

when the server

doesn’t have a

display device

Global URL Properties

org.codice.ddf.syste String
m.protocol

org.codice.ddf.inter String
nal.hostname

org.codice.ddf.syste String
m.httpsPort

org.codice.ddf.syste String
m.HttpPort

Default protocol that https:// Yes
should be used to

connect to this

machine.

The hostname or IP localhost Yes
address this system
runs on.

If the hostname is
changed during the
install to something
other than localhost
a new Kkeystore and
truststore must be
provided. See
Managing Keystores
and Certificates for
details.

The https port that 8993 Yes
the system uses.

NOTE: This DOES
change the port the
system runs on.

The http port that 8181 Yes
the system uses.

NOTE: This DOES
change the port the
system runs on.

33

Title

Internal

Default Port

Property Type

org.codice.ddf.syste String
m.port

Internal Root 0rg.codice.ddf.syste String

Context

External
Default
Protocol

54

m.rootContext

org.codice.ddf.exter String
nal.protocol

Description Default Value

The default port that 8993
the system uses. This
should match either

the above http or

https port.

NOTE: This DOES
change the port the
system runs on.

The base or root /services
context that services

will be made

available under.

Default protocol that https://
should be used to

connect to this

machine.

Requi
red

Yes

Yes

Yes

Title Property Type

External Host 0rg.codice.ddf.exter String
nal.hostname

HTTPS Port org.codice.ddf.exter String
nal.httpsPort

External org.codice.ddf.exter String
HTTP Port nal.httpPort

Description Default Value

The hostname or IP localhost
address used to

advertise the
system. Do not enter
localhost.

Possibilities include
the address of a
single node or that
of a load balancer in
a multi-node
deployment.

If the hostname is
changed during the
install to something
other than localhost
a new keystore and
truststore must be
provided. See
Managing Keystores
and Certificates for
details.

NOTE: Does not
change the address
the system runs on.

The https port used 8993
to advertise the
system.

NOTE: This does not
change the port the
system runs on.

The http port used to 8181
advertise the system.

NOTE: This does not
change the port the
system runs on.

Requi
red

Yes

Yes

Yes

55

Title

External
Default Port

External Root 0rg.codice.ddf.

Context

Site Name

Site Contact

Version

Organization

Registry ID

Thread Pool
Size

56

Property

org.codice.ddf.exter String

nal.port

nal.context

org.codice.ddf.

m.siteName

org.codice.ddf.

m.siteContact

org.codice.ddf.

m.version

org.codice.ddf.

m.organization

org.codice.ddf.

m.registry-id

org.codice.ddf.

exter

Type Description

The default port
used to advertise the
system. This should
match either the
above http or https
port.

NOTE: Does not
change the port the
system runs on.

String The base or root
context that services
will be advertised
under.

System Information Properties

syste

syste

syste

syste

syste

syste

m.threadPoolSize

String The site name for
DDF.

String The email address of
the site contact.

String The version of DDF
that is running.

This value should
not be changed from
the factory default.

String The organization
responsible for this
installation of DDF.

String The registry id for
this installation of
DDF.

Thread Pool Settings

Integer Size of thread pool
used for handling UI
queries, federating
requests, and
downloading
resources. See
Configuring Thread
Pools

HTTPS Specific Settings

Default Value

8993

/services

ddf.distribution

2.16.1

Codice Foundation

128

Requi
red

Yes

Yes

Yes

No

Yes

Yes

No

Yes

Title

Cipher Suites https.cipherSuites

Https
Protocols

Allow Basic
Auth Over
Http

Restrict the
Security
Token
Service to
allow
connections
only from
DNs
matching
these
patterns

Parse XML
documents
into DOM
object trees

Property Type
String
https.protocols String

org.codice.allowBasi Bpolean
cAuthOverHttp

ws- _ String
security.subject.cer
t.constraints

Description Default Value Requi

red

TLS_DHE_RSA_WITH_AES No

Cipher suites to use
_128_GCM_SHA256,

with secure sockets.
If using the JCE
unlimited strength
policy, use this list in
place of the defaults:

TLS_DHE_RSA_WITH_AES
_128_CBC_SHA256,

TLS_DHE_RSA_WITH_AES
_128_CBC_SHA,

TLS_ECDHE_ECDSA_WITH
_AES_128_GCM_SHA256,

TLS_ECDHE_RSA_WITH_A
ES_128_GCM_SHA256

Protocols to allow ~ TLSv1.7,TLSv1.2 No

for secure
connections

Set to true to allow false Yes

Basic Auth
credentials to be
sent over HTTP
unsecurely. This
should only be done
in a test
environment. These
events will be
audited.

Set to a comma Yes
separated list of

regex patterns to

define which hosts

are allowed to

connect to the STS

XML Settings

javax.xml.parsers.Do String
cumentBuilderFactory

org.apache.xerces.ja Yes
xp.DocumentBuilderFa
ctoryImpl

Enables Xerces-]

implementation of
DocumentBuilderFacto

ry

Catalog Source Retry Interval

57

Title

Initial
Endpoint
Contact
Interval

Maximum
Endpoint
Contact
Interval

58

Property Type

org.codice.ddf.platf Integer
orm.util.http.initia
1RetryInterval

Maximum seconds
between attempts to
establish contact
with unavailable
Catalog Source.

Integer

Description Default Value

If a Catalog Source is 10
unavailable, try to
connect to it after
the initial interval
has elapsed. After
every retry, the
interval doubles, up
to a given maximum
interval. The
interval is measured
in seconds.

Do not wait longer 300
than the maximum
interval to attempt
to establish a
connection with an
unavailable Catalog
Source. Smaller
values result in
more current
information about
the status of Catalog
Sources, but cause
more network
traffic. The interval
is measured in
seconds.

File Upload Settings

Requi
red

Yes

Yes

Title Property

File bad.file.extensions

extensions
flagged as
potentially
dangerous to
the host
system or
external
clients

File names bad.files

flagged as
potentially
dangerous to
the host
system or
external
clients

Mime types
flagged as
potentially
dangerous to
external
clients

File names ignore.files

flagged as
potentially
dangerous to
external
clients

bad.mime.types

Type

String

String

String

String

Description

Files uploaded with
these bad file
extensions will have
their file names
sanitized before
being saved

E.g. sample_file.exe
will be renamed to
sample_file.bin upon
ingest

Files uploaded with
these bad file names
will have their file
names sanitized
before being saved

E.g.
crossdomain.xml

will be renamed to
file.bin upon ingest

Files uploaded with
these mime types
will be rejected from
the upload

Files uploaded with
these file names will
be rejected from the
upload

Default Value Requi
red

.exe, .jsp, .html, Yes
.js, .php, .phtml,
.php3, .php4, .php5,
.phps, .shtml,
.jhtml, .pl, .py,
.cqgi, .msi, .com,
.scr, .gadget,
.application, .pif,
.hta, .cpl, .msc,
.jar, .kar, .bat,
.cmd, .vb, .vbs,
.vbe, .jse, .uws,
wsf, .wsc, .wsh,
.ps1, .psixml, .ps2,
.ps2xml, .psct,
.psc2, .msh, .mshT1,
.msh2, .mshxml,
.msh1xml, .msh2xml,
.scf, .lnk, .inf,
.reg, .d11, .vxd,
.cpl, .cfg, .config,
.crt, .cert, .pem,
.jks, .p12, .p7b,
.key, .der, .csr,
.jsb, .mhtml, .mht,
.xhtml, .xht

crossdomain.xml, Yes
clientaccesspolicy.x

ml, .htaccess,

.htpasswd, hosts,
passwd, group,
resolv.conf,

nfs.conf, ftpd.conf,
ntp.conf,

web.config,

robots.txt

text/html, Yes
text/javascript,
text/x-javascript,
application/x-
shellscript,
text/scriptlet,
application/x-
msdownload,
application/x-
msmetafile

.DS_Store, Thumbs.db Yeg

39

Title

Solr Catalog
Client

Zookeeper
Nodes

Allow DDF to
change the
Solr server
password if it
detects the
default
password is
in use

Solr Data
Directory

Solr server
HTTP port

Solr server
URL

Solr Heap
Size

Encrypted
Solr server
password

60

Property

solr.client

Type

String

Description

General Solr Catalog Properties

Type of Solr
configuration

Solr Cloud Properties

solr.cloud.zookeeper String

solr.attemptAutoPass Boolean

wordChange

solr.data.dir

solr.http.port

solr.http.url

solr.mem

solr.password

String

Integer

String

String

String

Zookeeper

hostnames and port

numbers

Managed Solr Server Properties

If true, DDF attempts
to change the default

Solr server
password to a

randomly generated
UUID. This property
is only used if the
solr.client property
is HttpSolrClient

and the
solrBasicAuth

property is true.

Directory for Solr

core files

Solr server’s port.

URL for a HTTP Solr
server (required for

HTTP Solr)

Memory allocated to
the Solr Java process

The password used

for basic

authentication to
Solr. This property is

only used if the

solr.client property
is HttpSolr(Client

and the
solrBasicAuth

property is true.

Default Value

HttpSolrClient

zookeeperhost1:2181,
zookeeperhost2:2181,
zookeeperhost3:2181

true

<DDF_HOME>/solr/serv
er/solr

8994

admin

Requi
red

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Title Property Type Description Default Value Requi
red

Solr server solr.username String The username for admin Yes
username basic authentication

to Solr. This

property is only

used if the

solr.client property

is HttpSolr(Client

and the

solrBasicAuth

property is true.

Use basic solr.useBasicAuth Boolean If true, the HTTP true Yes
authenticatio Solr Client sends a
n for Solr username and
server password when
sending requests to
Solr server. This
property is only
used if the
solr.client property
is HttpSolrClient.

Start Solr start.solr Boolean If true, application ~ true Yes
server manages Solr server
lifecycle

These properties are available to be used as variable parameters in input url fields within the Admin
Console. For example, the url for the local csw service (https:/{FQDN}:{PORT}/services/csw) could be
defined as:

${org.codice.ddf.system.protocol}${org.codice.ddf.system.hostname}:${org.codice.ddf.syste
m.port}${org.codice.ddf.system.rootContext}/csw

This variable version is more verbose, but will not need to be changed if the system host, port or root
context changes.

WARNING Only root can access ports < 1024 on Unix systems.

7.3.2. Configuring with .config Files

The DDF is configured using .config files. Like the Karaf .cfg files, these configuration files must be
located in the <DDF_HOME>/etc/ directory. Unlike the Karaf .cfg files, .config files must follow the
naming convention that includes the configuration persistence ID (PID) that they represent. The
filenames must be the pid with a .config extension. This type of configuration file also supports lists
within configuration values (metatype cardinality attribute greater than 1) and String, Boolean,

61

Integer, Long, Float, and Double values.

This new configuration file format must be used for any configuration that
makes wuse of lists. Examples include Web Context Policy Manager
(org.codice.ddf.security.policy.context.impl.PolicyManager.config) and
Security STS Guest Claims Handler (ddf.security.sts.questclaims.config).

IMPORTANT

Only one configuration file should exist for any given PID. The result of having
WARNING both a .cfg and a .config file for the same PID is undefined and could cause the
application to fail.

The main purpose of the configuration files is to allow administrators to pre-configure DDF without
having to use the Admin Console. In order to do so, the configuration files need to be copied to the
<DDF_HOME>/etc directory after DDF zip has been extracted.

Upon start up, all the .config files located in <DDF_HOME>/etc are automatically read and processed. DDF
monitors the <DDF_HOME>/etc directory for any new .config file that gets added. As soon as a new file is
detected, it is read and processed. Changes to these configurations from the Admin Console or
otherwise are persisted in the original configuration file in the <DDF_HOME>/etc directory.

7.4. Configuring User Access

DDF does not define accounts or types of accounts to support access. DDF uses an attribute based access
control (ABAC) model. For reference, ABAC systems control access by evaluating rules against the
attributes of the entities (subject and object), actions, and the environment relevant to a request.

DDF can be configured to access many different types of user stores to manage and monitor user
access.

7.4.1. Configuring Guest Access

Unauthenticated access to a secured DDF system is provided by the Guest user. By default, DDF allows
guest access.

Because DDF does not know the identity of a Guest user, it cannot assign security attributes to the
Guest. The administrator must configure the attributes and values (i.e. the "claims") to be assigned to
Guests. The Guest Claims become the default minimum attributes for every user, both authenticated
and unauthenticated. Even if a user claim is more restrictive, the guest claim will grant access, so
ensure the guest claim is only as permissive as necessary.

The Guest user is uniquely identified with a Principal name of the format Guest@UID. The unique
identifier is assigned to a Guest based on its source IP address and is cached so that subsequent Guest
accesses from the same IP address within a 30-minute window will get the same unique identifier. To
support administrators' need to track the source IP Address for a given Guest user, the IP Address and
unique identifier mapping will be audited in the security log.

62

* Make sure that all the default logical names for locations of the security services are defined.

7.4.1.1. Denying Guest User Access

To disable guest access for a context, use the Web Context Policy Manager configuration to remove
Guest. from the Authentication Type for that context. Only authorized users are then allowed to
continue to the Search UI page.

If using the included IdP for authentication, disable the Allow Guest Access option by

NOTE
Configuring the IdP Server.

7.4.1.2. Allowing Guest User Access

Guest authentication must be enabled and configured to allow guest users. Once the guest user is
configured, redaction and filtering of metadata is done for the guest user the same way it is done for
normal users.

To enable guest authentication for a context, use the Web Context Policy Manager configuration to
change the Authentication Type for that context to Guest.

. Navigate to the Admin Console.
. Select the Security application.

. Select the Configuration tab.

1

2

3

4. Select Web Context Policy Manager.

5. Select the desired context (/, /search, /admin, etc.).
6

. Add Guest to the Authentication Type list.

a. Separate entries with a | symbol (eg. /=SAML | Guest).
7.4.1.2.1. Configuring Guest Interceptor if Allowing Guest Users
* Required Step for Security Hardening

If a legacy client requires the use of the secured SOAP endpoints, the guest interceptor should be
configured. Otherwise, the guest interceptor and public endpoints should be uninstalled for a
hardened system.

To uninstall the guest interceptor and public endpoints: . Navigate to the Admin Console. . Select the
System tab. . Open the Features section. . Search for security-interceptor-guest. . Click the Uninstall
button.

7.4.1.2.2. Configuring Guest Claim Attributes

A guest user’s attributes define the most permissive set of claims for an unauthenticated user.

A guest user’s claim attributes are stored in configuration, not in the LDAP as normal authenticated

63

users' attributes are.

. Navigate to the Admin Console.
. Select the Security application.

. Select the Configuration tab.

1

2

3

4. Select the Security Guest Claims Handler.

5. Add any additional attributes desired for the guest user.
6

. Save changes.

7.4.2. Configuring REST Services for Users
If using REST services or connecting to REST sources, several configuration options are available.

DDF includes an Identity Provider (IdP), but can also be configured to support an external IdP or no
IdP at all. The following diagram shows the configuration options.

Configuring REST Services
for Users

' ; '

Configuring Included Connecting to an External Confi?uring without an

r [Identity Provider] T [Identity Provider] r [dentity Provider] 1
Configurin Connecting to Using STS Connecting to
External STS without IdP an External STS
without IdP

Included STS

REST Services Configuration Options

7.4.2.1. Configuring Included Identity Provider

The included IdP is installed by default.

Installing the IdP from the Admin Console

1. Navigate to the Admin Console.
2. Select the System tab.
3. Select the Features tab.

4. Install security-idp feature.

Installing the IdP from the Command Console

Run the command feature:install security-idp from the Command Console.

Configuring the IdP Server

1. Navigate to the Admin Console.

64

Select the Security application.
Select the Configuration tab.

Select IdP Server.

1ok W

Configure Authentication Request requirements

a. Disable the Require Signed AuthnRequests option to allow processing of authentication
requests without signatures.

b. Disable the Limit RelayStates to 80 Bytes option to allow interoperability with Service
Providers that are not compliant with the SAML Specifications and send RelayStates larger than
80 bytes.

6. Configure Guest Access:

a. Disable the Allow Guest Access option to disallow a user to authenticate against the IdP with a
guest account.

7. Configure the Service Providers (SP) Metadata:
a. Select the + next to SP Metadata to add a new entry.
b. Populate the new entry with:
1. an HTTPS URL (https://) such as https://localhost:8993/services/saml/sso/metadatal,
ii. a file URL (file:), or

iii. an XML block to refer to desired metadata.

Service Provider Metadata Example

<md:EntityDescriptor xmlns:md="urn:oasis:names:tc:SAML:2.0:metadata" entityID=
"https://localhost:8993/services/saml">
<md:SPSSODescriptor protocolSupportEnumeration="urn:oasis:names:tc:SAML:2.0:protocol">
<md:KeyDescriptor use="signing">
<ds:KeyInfo xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#">
<ds:X509Data>
<ds:X509Certificate>

MIIDEzCCAnygAwIBAgIJAIzc4FYrIp9mMAOGCSqGSIb3DQEBBQUAMHexCzAJBgNVBAYTALVTMQswCQYDVQQIDAIBW
JEMMAoGATUECgwDRERGMQuwwCgYDVQQLDANEZXYxGTAXBgNVBAMMEERER1BEZW1vIFIvb3QgQOExJIDA1BgkghkiGIw
OBCQEWFWRkZnJvb3RjYUBleGFtcGx1Lm9yZzAeFwOxNDEyMTAYMTUAMThaFw@xNTEyMTAyMTU4MThaMIGDMQswCQY
DVQQGEwJVUZELMAKGATUECAWCQVoxETAPBgNVBAcMCEdvb2R5ZWFyMQwwCgYDVQQKDANEREYXDDAKBgNVBASMAQR1
djESMBAGATUEAwwIbG9jYWxob3NOMSQwIgYIKoZIhveNAQkBFhVsb2NhbGhve3RAZXhhbXBsZS5vemewgZ8wDQY K
0ZIhvcNAQEBBQADgY@AMIGIA0GBAMeCyNZbCTZphHQfB5g8FrgBq1RYzV7ikVw/pVakz8gx313A99s8WtA4mRAeb6
n@vTRIyYNBOekW4nYOiEOq//YT1/frI1kz0QbEHTs2cI5nFButabD3PYGxUSuapbc+AS7+Pk1r@TDI4MRzPPkkTp4w
10RQ/a6CfVsNr/mVgL2CfAgMBAAG]jgZkwgZYwCQYDVRAOTBAIwADANBg1ghkgBhvhCAQOEGhYYRK9SIFRFUTRITkeg
UFVSUE9TRSBPTkxZMBOGA1UdDgQWBBSA95QIMyBAHRSd@R4s7C3BreFrsDAfBgNVHSMEGDAWGBThVMeX3wrCvb1fe
FA7CyvkSBe9xjAgBgNVHREEGTAXgRVsb2NhbGhvc3RAZXhhbXBsZS5vemewDQYJIKoZIhveNAQEFBQADGYEAtRUp7 f
AxU/E6JID2K;j /+CTWqu8E1x1350Tx0Iqv3gMoBWAehyzEK]jJi0bb1gUx07n1SmOESp5SE3jGTnh@GtYVAD219z/09n
90cd/imAEhkn]1ayyd@Sjpnal9IUd8uYxJexy8TI2sMhsGAZOEMTZCFTIm@7Xdux jsmDzOh1SGV0=

65

https://
https://localhost:8993/services/saml/sso/metadata1

</ds:X509Certificate>
</ds:X509Data>
</ds:KeyInfo>
</md:KeyDescriptor>
<md:KeyDescriptor use="encryption">
<ds:KeyInfo xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#">
<ds:X509Data>
<ds:X509Certificate>

MIIDEzCCAnygAwIBAgIJAIzc4FYrIp9mMAOGCSqGSIb3DQEBBQUAMHexCzAJBgNVBAYTALVTMQswCQYDVQQIDAIBW
jEMMAoGATUECgwDRERGMQwwCgYDVQQLDANEZXYXxGTAXBgNVBAMMEERER1BEZW1vIFJIvb3QgQ@ExJIDAi1BgkqhkiGIw
@BCQEWFWRkZnJvb3RjYUBleGFtcGx1Lm9yZzAeFwOXNDEyMTAYMTUAMThaFw@xNTEyMTAyMTU4MThaMIGDMQswCQY
DVQQGEwJVUZELMAKGATUECAWCQVoxETAPBgNVBAcMCEdvb2R5ZWFyMQwwCgYDVQQKDANEREYXDDAKBgNVBASMAQR1
djESMBAGATUEAwwJbGIj YWxob3N@MSQwIgYIKoZIhveNAQkBFhVsb2NhbGhve3RAZXhhbXBsZS5vemewgZ8wDQYIK
0ZIhvcNAQEBBQADgY@AMIGIA0GBAMeCyNZbCTZphHQfB5g8FrgBq1RYzV7ikVw/pVakz8gx313A99s8WtA4mRAebb
n@vTRIyNBOekW4nYOiEOq//YTi/frI1kz0QbEH1s2cI5nFButabD3PYGxUSuapbc+AS7+Pk1r@TDIAMRZPPkkTp4w
10RQ/abCfVsNr/mVgL2CfAgMBAAGjgZkwgZYwCQYDVRAOTBAIwADANBg1ghkgBhvhCAQOEGhYYRK9SIFRFUTRITkeg
UFVSUE9TRSBPTkxZMBAGA1UdDgQWBBSA95QIMyBAHRSd@R4s7C3BreFrsDAfBgNVHSMEGDAWGBThVMeX3wrCvblfe
F47CyvkSBe9xjAgBgNVHREEGTAXgRVsb2NhbGhve3RAZXhhbXBsZS5vemewDQYJKoZIhveNAQEFBQADGYEAtRUp7f
AxU/E6JID2K7j /+CTWqu8E1x1350Tx0Iqv3gMoBWAehyzEK]jJi@bb1gUx07n1SmOESp5sE3jGTnh@GtYVAD219z/09n
90cd/imAEhknJ1ayyd@Sjpnal 9JUd8uYxJexy8TI2sMhsGAZOEMTZCFTImA7XduxjsmDzOh1SGVO=
</ds:X509Certificate>
</ds:X509Data>
</ds:KeyInfo>

</md:KeyDescriptor>

<md:SinglelogoutService Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect"
Location="https://localhost:8993/1logout"/>

<md:SinglelogoutService Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"
Location="https://localhost:8993/1ogout"/>

<md:AssertionConsumerService Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-
Redirect" Location="https://localhost:8993/services/saml/sso"/>

<md:AssertionConsumerService Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"
Location="https://localhost:8993/services/saml/sso"/>

</md:SPSSODescriptor>
</md:EntityDescriptor>

Configuring IdP as the Authentication Type

To use the IdP for authentication,

1. Navigate to the Admin Console.

2. Select the Security application.

3. Select the Configuration tab.

4. Select Web Context Policy Manager.
5

. Under Authentication Types, set the IdP authentication type to context paths as necessary. Note
that it should only be used on context paths that will be accessed by users via web browsers. For

66

example:
o /search=IdP

Other authentication types can also be used in conjunction with the IdP type. For example, if you
wanted to secure the entire system with the IdP, but still allow legacy clients that don’t understand the
SAML ECP specification to connect, you could set /=IdP|PKI. With that configuration, any clients that
failed to connect using either the SAML 2.0 Web SSO Profile or the SAML ECP specification would fall
back to 2-way TLS for authentication.

If you have configured /search to use IdP, ensure to select the "External Authentication"

NOTE
checkbox in Search UI standard settings.

Configuring the SP
To configure the IdP client (also known as the SP) that interacts with the specified IdP,

Navigate to the Admin Console.
Select the Security application.
Select the Configuration tab.

Select IdP Client.

SR

Populate IdP Metadata field through one of the following:
a. an HTTPS URL (https://) e.g., https://localhost:8993/services/idp/login/metadata,
b. a file URL (file:), or

¢. an XML block to refer to desired metadata.

IdP Client (SP) example.xml

<md:EntityDescriptor xmlns:md="urn:oasis:names:tc:SAML:2.0:metadata" entitylID=
"https://localhost:8993/services/idp/login">
<md: IDPSSODescriptor WantAuthnRequestsSigned="true" protocolSupportEnumeration=
"urn:oasis:names:tc:SAML:2.0:protocol">
<md:KeyDescriptor use="signing">
<ds:KeyInfo xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#">
<ds:X509Data>
<ds:X509Certificate>

MIIDEzCCAnygAwIBAgQIJAIzc4FYrIp9mMAOGCSqGSIb3DQEBBQUAMHexCzAJBgNVBAYTALVTMQswCQYDVQQIDAIBW
JEMMAoGATUECgwDRERGMQwwCgYDVQQLDANEZXYxGTAXBgNVBAMMEERER1BEZW1vIFIvb3QgQOExIDA1BgkqghkiG9w
@BCQEWFWRkZnJvb3RjYUBleGFtcGx1Lm9yZzAeFwOXNDEYMTAYMTU4MThaFw@xNTEYMTAYMTU4MThaMIGDMQswCQY
DVQQGEwIVUZELMAKGATUECAWCQVoxETAPBgNVBAcMCEdvb2R5ZWFyMQwwCgYDVQQKDANEREYXDDAKBgNVBASMAQR1
djESMBAGATUEAwwIbGI9jYWxob3NOMSQwIgYIKoZIhveNAQkBFhVsb2NhbGhve3RAZXhhbXBsZS5vemewgZ8wDQY JK
0ZIhvcNAQEBBQADgY@QAMIGIA0GBAMeCyNZbCTZphHQfB5g8FrgBq1RYzV7ikVw/pVGkz8gx313A99s8WtA4mRAebb
n@vTRIyNBOekW4nY0iEQq//YTi/frI1kz0QbEHTs2cI5nFButabD3PYGxUSuapbe+AS7+Pk1r@TDI4MRzPPkkTpdw
10RQ/abCfVsNr/mVgL2CfAgMBAAG]jgZkwgZYwCQYDVRAOTBAIwADANBg1ghkgBhvhCAQOEGhYYRK9SIFRFUTRITkeg

67

https://
https://localhost:8993/services/idp/login/metadata

UFVSUE9TRSBPTkxZMBOGA1UdDgQWBBSA95QIMyBAHRsdOR4s7C3BreFrsDAfBgNVHSMEGDAWGBThVMeX3wrCvb1fe
F47CyvkSBe9xjAgBgNVHREEGTAXgRVsb2NhbGhve3RAZXhhbXBsZS5vemewDQYJKoZIhveNAQEFBQADGYEAtRUp7f
AxU/E6JID2K7j /+CTWqu8E1x1350Tx0Iqv3gMoBWAehyzEK]jJi0bb1gUx07n1SmOESp5SE3jGTnh@GtYVAD219z/09n
90cd/imAEhknJ1ayyd@Sjpnal 9JUd8uYxJexy8TI2sMhsGAZOEMTZCFTImA7XduxjsmDzOh1SGVO=
</ds:X509Certificate>
</ds:X509Data>
</ds:KeyInfo>
</md:KeyDescriptor>
<md:KeyDescriptor use="encryption">
<ds:KeyInfo xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#">
<ds:X509Data>
<ds:X509Certificate>

MIIDEzCCAnygAwIBAgIJAIzcAFYrIp9mMA@GCSqGSIb3DQEBBQUAMHcxCzAIBgNVBAYTALVTMQswCQYDVQQIDAIBW
jEMMAoGATUECgwDRERGMQuwwCgYDVQQLDANEZXYXGTAXBgNVBAMMEERER1BEZW1vIFJIvb3QgQ@ExJIDAiBgkghkiGw
@BCQEWFWRkZnJvb3RjYUBleGFtcGx1Lm9yZzAe FwOXNDEyMTAyMTUAMThaFw@xNTEyMTAyMTU4MThaMIGDMQswCQY
DVQQGEwJVUZELMAKGATUECAWCQVoxETAPBgNVBACMCEdvb2R5ZWFyMQuwwCgYDVQQKDANEREYXDDAKBgNVBASMAGRL
djESMBAGATUEAwwJbG9j YWxob3N@MSQwIgYIKoZIhveNAQkBFhVsb2NhbGhve3RAZXhhbXBsZS5vemewgZ8wDQYIK
0ZIhvcNAQEBBQADGY@AMIGIA0GBAMeCyNZbCTZphHQfB598FrgBq1RYzV7ikVw/pVGkz8gx313A99s8WtA4mRAebb
n@vTRIYNBOekW4nYOiEQq//YTi/frI1kz@QbEH1s2cI5nFButabD3PYGxUSuapbc+AS7+Pk1r@TDI4MRzPPkkTp4w
10RQ/abCfVsNr/mVgL2CfAgMBAAGjgZkwgZYwCQYDVROTBAIwADANBg1ghkgBhvhCAQOEGhYYRK9SIFRFUTRITkeg
UFVSUE9TRSBPTkxZMBOGA1UdDgQWBBSA95QIMyBAHRsdOR4s7C3BreFrsDAfBgNVHSMEGDAWGBThVMeX3wrCv61fe
F47CyvkSBe9xjAgBgNVHREEGTAXgRVsb2NhbGhve3RAZXhhbXBsZS5vemewDQYJKoZIhveNAQEFBQADGYEAtRUp7f
AxU/E6JD2K7j /+CTWqu8E1x1350Tx0oIqv3gMoBWAehyzEK]jJi0bb1gUx07n1SmOESp5sE3jGTnh@GtYVAD219z/09n
90cd/imAEhknJ1ayyd@Sjpnal 9JUd8uYxJexy8TI2sMhsGAZOEMTZCFTImA7XduxjsmDzOh1SGVO=
</ds:X509Certificate>
</ds:X509Data>
</ds:KeyInfo>
</md:KeyDescriptor>
<md:SinglelLogoutService Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect"
Location="https://localhost:8993/1ogout"/>
<md:SinglelLogoutService Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"
Location="https://localhost:8993/1ogout"/>
<md:NameIDFormat>
urn:oasis:names:tc:SAML:2.0:nameid-format:persistent
</md:NameIDFormat>
<md:NameIDFormat>
urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified
</md:NameIDFormat>
<md:NameIDFormat>
urn:oasis:names:tc:SAML:1.7:nameid-format:X509SubjectName
</md:NameIDFormat>
<md:SingleSignOnService Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect"
Location="https://localhost:8993/services/idp/login"/>
<md:SingleSignOnService Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"
Location="https://localhost:8993/services/idp/login"/>
</md:IDPSSODescriptor>
</md:EntityDescriptor>

68

When using the included IdP, DDF can be configured to use the included Security Token Service(STS).

7.4.2.1.1. Configuring Included STS

An LDAP server can be used to maintain a list of DDF users and the attributes associated with them.
The Security Token Service (STS) can use an LDAP server as an attribute store and convert those
attributes to SAML claims.

DDF includes a demo LDAP server, but an external LDAP is required for actual installation.
The STS is installed by default in DDF.

Configuring STS

1. Verify that the serverKeystores.jks file in <DDF_HOME>/etc/keystores trusts the hostnames used in
your environment (the hostnames of LDAP, and any DDF users that make use of this STS server).

Navigate to the Admin Console.

Select the System tab.

Select the Features tab.

Start the security-sts-1daplogin and security-sts-1dapclaimshandler features.
Select the Configuration tab.

Select the Security STS LDAP Login configuration.

® N e s w N

Verify that the LDAP URL, LDAP Bind User DN, and LDAP Bind User Password fields match your
LDAP server’s information.

a. The default DDF LDAP settings will match up with the default settings of the OpenD] embedded
LDAP server. Change these values to map to the location and settings of the LDAP server being
used.

9. Select the Save changes button if changes were made.
10. Open the Security STS LDAP and Roles Claims Handler configuration.
11. Populate the same URL, user, and password fields with your LDAP server information.

12. Select the Save Changes button.

Configuring DDF Authentication Scheme

Configure the DDF to use this authentication scheme.

1. Navigate to the Admin Console.
2. Select the Catalog application.
3. Open the Web Context Policy Manager configuration.
a. Under Authentication Types, make any desired authentication changes to contexts.

i. In order to use the SAML 2.0 Web SSO profile against a context, you must specify only the
IdP authentication type.

69

Security STS Client

Configure the client connecting to the STS.

Navigate to the Admin Console.
Select the Security application.

Open the Security STS Client configuration.

= WMo

Verify that the host/port information in the STS Address field points to your STS server. If you are
using the default bundled STS, this information will already be correct.

See Security STS Client table for all configuration options.

The DDF should now use the SSO/STS/LDAP servers when it attempts to authenticate a user upon an
attempted log in.

STS Server

Connect to the server hosting the STS.

1. Navigate to the Admin Console.
2. Select the Security application.
3. Select the Security STS Server configuration.

4. Verify the hostname and usernames are correct.
See Security STS Server table for all configuration options.

SAML Name ID

Set up alternatives to displaying the username of the logged in user.

1. Navigate to the Admin Console.

2. Select the Security application.

3. Select the SAML NamelD Policy configuration.

4. Add any desired attributes to display instead of the username. (The first matching attribute will be

used.)

Limiting Access to the STS

Be sure to limit the hosts that are allowed to connect to the STS:

* Required Step for Security Hardening

Open the <DDF_HOME>/etc/custom.system.properties file.

Edit the line ws-security.subject.cert.constraints = .*CN=<MY_HOST_CN>.*.

> By default this will only allow your hostname. To allow other desired hosts add their CNs to the
regular expression within parentheses delimited by |:

70

« Ws-security.subject.cert.constraints =
. *CN=(<MY_HOST_CN> | <OTHER_HOST_CN>| <ANOTHER_HOST_CN>).*

7.4.2.2. Connecting to an External Identity Provider

To connect to an external Identity Provider,
1. Provide the external IdP with DDF’s Service Provider (SP) metadata. The SP metadata can found at
https://<FQDN>:<PORT>/services/saml/sso/metadata.
2. Replace the IdP metadata field in DDF.
a. Navigate to the Admin Console.
b. Select the Security application.
c. Select the Configuration tab.
d. Select IdP Client.

e. Populate the IdP Metadata field with the external IdP’s metadata.

The certificate that the external IdP uses for signing will need to be added to the DDF’s

NOTE
keystore. See Updating Key Store / Trust Store via the Admin Console for details.

DDF may not interoperate successfully with all IdPs. To idenify the ones it can
NOTE interoperate with use the The Security Assertion Markup Language (SAML)
Conformance Test Kit (CTK) &

Service Provider Metadata

It is not recommended to remove or replace the included Service Provider. To add an additional,
external Service Provider, add the SP metadata to the IdP Server configuration. See Configuring
Security IdP Service Provider for more detail.

7.4.2.3. Configuring Without an Identity Provider

To configure DDF to not use an Identity Provider (IdP),

1. Disable the IdP feature.
a. Navigate to the Admin Console.
b. Select the System tab.
c. Select the Features tab.
d. Uninstall the security-idp feature.
2. Change the Authentication Type if it is IdP.
a. Navigate to the Admin Console.

b. Select the Security application.

71

https://<FQDN>:<PORT>/services/saml/sso/metadata
https://<FQDN>:<PORT>/services/saml/sso/metadata
https://<FQDN>:<PORT>/services/saml/sso/metadata
https://<FQDN>:<PORT>/services/saml/sso/metadata
https://<FQDN>:<PORT>/services/saml/sso/metadata
https://<FQDN>:<PORT>/services/saml/sso/metadata
https://<FQDN>:<PORT>/services/saml/sso/metadata
https://<FQDN>:<PORT>/services/saml/sso/metadata
https://<FQDN>:<PORT>/services/saml/sso/metadata
https://github.com/codice/saml-conformance
https://github.com/codice/saml-conformance

c. Select the Configuration tab.
d. Select Web Context Policy Manager

e. Under Authentication Types, remove the IdP authentication type from all context paths.

7.4.2.3.1. Using STS without IdP

To configure DDF to use the included Security Token Service (STS) without an IdP, follow the same
Configuring STS steps, with one additional configuration to make via the Web Context Policy Manager.

Configuring Authentication Types for STS

1. Navigate to the Admin Console.

2. Select the Security application.

3. Select Configuration.

4. Select the Web Context Policy Manager.
5

. Add any needed authentication types to the Authentication Types list, such as PKI, Basic, etc.

7.4.2.4. Configuring Multi Factor Authentication

Mutli-factor authentication, sometimes referred to as two-factor authentication, allows for greater
security. It does this by requiring users to provide multiple proofs of identity, typically through
something they know (such as a password), and something they have/are (such as a randomly
generated pin number sent to one of their personal devices). The IdP that comes with DDF does not
support multi-factor authentication by default.

Keycloak can be used to help setup and configure multi-factor authentication. See Connecting to an
External Identity Provider on how to initially hookup Keycloak.

Configuring Keycloak for MFA

1. Download and install Keycloak from here: Keycloak Downloads {external link}
2. See Choosing an Operating Mode {external link} to choose a specific operation mode.
3. Set up an Admin User following these steps here: Server Admin Initialization {external link}

4. Refer to OTP Policies {external link} for how to set up multi-factor authentication using supported
authentication tools such as FreeOTP and Google Authenticator.

See the Keycloak Documentation {external link} for more information and details about how to
configure Keycloack for multi-factor authentication.

7.4.3. Configuring SOAP Services for Users

If using SOAP services, DDF can be configured to use the included Security Token Service (STS).

72

https://www.keycloak.org/downloads.html
https://www.keycloak.org/docs/latest/server_installation/index.html#_operating-mode
https://www.keycloak.org/docs/latest/server_admin/index.html#server-initialization
https://www.keycloak.org/docs/latest/server_admin/index.html#otp-policies
https://www.keycloak.org/documentation.html

7.4.3.1. Connecting to Included STS with SOAP

DDF includes a STS implementation that can be used for user authentication over SOAP services.

Configure the STS WSS
Configure the STS WSS.

. Navigate to the Admin Console.

. Select the Security application.

1

2

3. Select Configuration.

4. Select Security STS WSS.
5

. Update the Claims that should be requested by the STS.

7.4.4. Connecting to an LDAP Server

The configurations for Security STS LDAP and Roles Claims Handler and Security
WARNING STS LDAP Login contain plain text default passwords for the embedded LDAP,
which is insecure to use in production.

Use the Encryption Service, from the Command Console to set passwords for your LDAP server. Then
change the LDAP Bind User Password in the Security STS LDAP and Roles Claims Handler
configurations to use the encrypted password.

A claim is an additional piece of data about a principal that can be included in a token along with basic
token data. A claims manager provides hooks for a developer to plug in claims handlers to ensure that
the STS includes the specified claims in the issued token.

Claims handlers convert incoming user credentials into a set of attribute claims that will be populated
in the SAML assertion. For example, the LDAPClaimsHandler takes in the user’s credentials and retrieves
the user’s attributes from a backend LDAP server. These attributes are then mapped and added to the
SAML assertion being created. Integrators and developers can add more claims handlers that can
handle other types of external services that store user attributes.

See the Security STS LDAP and Roles Claims Handler for all possible configurations.

7.4.5. Updating System Users

By default, all system wusers are located in the <DDF_HOME>/etc/users.properties and
<DDF_HOME>/etc/users.attributes files. The default users included in these two files are "admin" and
"localhost". The users.properties file contains username, password, and role information; while the
users.attributes file is used to mix in additional attributes. The users.properties file must also contain
the user corresponding to the fully qualified domain name (FQDN) of the system where DDF is
running. This FQDN user represents this host system internally when making decisions about what
operations the system is capable of performing. For example, when performing a DDF Catalog Ingest,

73

the system’s attributes will be checked against any security attributes present on the metacard, prior to
ingest, to determine whether or not the system should be allowed to ingest that metacard.

Additionally, the users.attributes file can contain user entries in a regex format. This allows an
administrator to mix in attributes for external systems that match a particular regex pattern. The
FQDN user within the users.attributes file should be filled out with attributes sufficient to allow the
system to ingest the expected data. The users.attributes file uses a JSON format as shown below:

{
"admin" : {
"test" : "testValue",
"test1" : ["testing1", "testing2", "testing3"]
Jis
"localhost" : {
Jr
".*host.*" : {
"reg" : "ex"
}
}

For this example, the "admin" user will end up with two additional claims of "test" and "test1" with
values of "testValue" and ["testingl", "testing2", "testing3"] respectively. Also, any host matching the
regex "host.” would end up with the claim "reg" with the single value of "ex". The "localhost" user
would have no additional attributes mixed in.

It is possible for a regex in users.attributes to match users as well as a system, so

WARNING
verify that the regex pattern’s scope will not be too great when using this feature.

If your data will contain security markings, and these markings are being parsed
out into the metacard security attributes via a PolicyPlugin, then the FQDN user

WARNING MUST be updated with attributes that would grant the privileges to ingest that
data. Failure to update the FQDN user with sufficient attributes will result in an
error being returned for any ingest request.

74

The following attribute values are not allowed:

o Null

* anon-String (e.g. 100, false)
WARNING

* an array including any of the above

. []

Additionally, attribute names should not be repeated, and the order that the
attributes are defined and the order of values within an array will be ignored.

7.4.6. Restricting Access to Admin Console
* Required Step for Security Hardening

If you have integrated DDF with your existing security infrastructure, then you may want to limit
access to parts of the DDF based on user roles/groups.

Limit access to the Admin Console to those users who need access. To set access restrictions on the
Admin Console, consult the organization’s security architecture to identify specific realms,
authentication methods, and roles required.

1. Navigate to the Admin Console.

2. Select the Security application.

3. Select the Configuration tab.

4. Select the Web Context Policy Manager.

a. A dialogue will pop up that allows you to edit DDF access restrictions.

b. Once you have configured your realms in your security infrastructure, you can associate them
with DDF contexts.

c. If your infrastructure supports multiple authentication methods, they may be specified on a
per-context basis.

d. Role requirements may be enforced by configuring the required attributes for a given context.

e. The white listed contexts allows child contexts to be excluded from the authentication
constraints of their parents.

7.4.6.1. Restricting Feature, App, Service, and Configuration Access

* Required Step for Security Hardening

Limit access to the individual applications, features, or services to those users who need access.
Organizational requirements should dictate which applications are restricted and the extent to which
they are restricted.

75

1. Navigate to the Admin Console.

2. Select the Admin application.

3. Select the Configuration tab.

4. Select the Admin Configuration Policy.
5. To add a feature or app permission:

a. Add a new field to "Feature and App Permissions" in the format of:

<feature name>/<app name> = "attribute name=attribute value","attribute name2=attribute
value2", -

b. For example, to restrict access of any user without an admin role to the catalog-app:
catalog-app = "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/role=admin", --

6. To add a configuration permission:

a. Add a new field to "Configuration Permissions" in the format of:

configuration id = "attribute name=attribute value","attribute name2=attribute value2", --

b. For example, to restrict access of any user without an admin role to the Web Context Policy
Manager:

org.codice.ddf.security.policy.context.impl.PolicyManager="http://schemas.xmlsoap.org/ws/20
05/05/identity/claims/role=admin"

If a permission is specified, any user without the required attributes will be unable to see or modify
the feature, app, or configuration.

7.4.7. Removing Default Users
» Required Step for Security Hardening

The default security configuration uses a property file located at <DDF_HOME>/etc/users.properties to
store users and passwords. A hardened system will remove this file and manage all users externally,
via an LDAP server or by other means.

Default Users are an Insecure Default

NOTE The Admin Console has an insecure default warning if the default users are not
removed.

Once DDF is configured to use an external user (such as LDAP), remove the users.properties file from
the <DDF_HOME>/etc directory. Use of a users.properties file should be limited to emergency recovery
operations and replaced as soon as effectively possible.

The deletion of the default users in the users.properties file can be done automatically after 72 hours.

76

This feature can be found at Admin Console — Admin - Default Users Deletion Scheduler -
Enable default users automatic deletion.

Once the default users are removed, the <DDF_HOME>/bin/client and
<DDF_HOME>/bin/client.bat scripts will not work. If SSH access to the Karaf shell is
to be supported, edit the file org.apache.karaf.shell.cfg in the <INSTALL_HOME>/etc
directory, changing the value of the sshRealm property from karaf to 1dap.

WARNING

Emergency Use of users.properties file

Typically, the DDF does not manage passwords. Authenticators are stored in an
external identity management solution. However, administrators may temporarily use
a users.properties file for emergencies.

If a system recovery account is configured in users.properties, ensure:

NOTE
* The use of this account should be for as short a time as possible.

* The default username/password of “admin/admin” should not be used.
» All organizational standards for password complexity should still apply.

* The password should be encrypted. For steps on how, see the section "Passwords
Encryption” at https://karaf.apache.org/manual/latest/security.

Compliance Reviews

NOTE It is recommended to perform yearly reviews of accounts for compliance with
organizational account management requirements.

7.4.8. Disallowing Login Without Certificates

DDF can be configured to prevent login without a valid PKI certificate.

Navigate to the Admin Console.

Select Security.

Select Web Context Policy Manager.

Add a policy for each context requiring restriction.
» For example: /search=SAML | PKI will disallow login without certificates to the Search UL

> The format for the policy should be: /<CONTEXT>=SAML | PKI

Click Save.

NOTE Ensure certificates comply with organizational hardening policies.

77

https://karaf.apache.org/manual/latest/security

7.4.9. Managing Certificate Revocation
* Required Step for Security Hardening

For hardening purposes, it is recommended to implement a way to verify a Certificate Revocation List
(CRL) at least daily or an Online Certificate Status Protocol (OCSP) server.

7.4.9.1. Managing a Certificate Revocation List (CRL)

A Certificate Revocation List is a collection of formerly-valid certificates that should explicitly not be
accepted.

7.4.9.1.1. Creating a CRL
Create a CRL in which the token issuer’s certificate is valid. The example uses OpenSSL.

$> openssl ca -gencrl -out crl-tokenissuer-valid.pem

Windows and OpenSSL

NOTE Windows does not include OpenSSL by default. For Windows platforms, a additional
download of OpenSSL or an alternative is required.

Revoke a Certificate and Create a New CRL that Contains the Revoked Certificate

$> openssl ca -revoke tokenissuer.crt

$> openssl ca -gencrl -out crl-tokenissuer-revoked.pem

Viewing a CRL

1. Use the following command to view the serial numbers of the revoked certificates: $> openssl crl
-inform PEM -text -noout -in crl-tokenissuer-revoked.pem

7.4.9.1.2. Enabling Certificate Revocation

Enabling CRL revocation or modifying the CRL file will require a restart of DDF to

NOTE
apply updates.

1. Place the CRL in <DDF_HOME>/etc/keystores.
2. Add the line org.apache.ws.security.crypto.merlin.x509crl.file=etc/keystores/<CRL_FILENAME> to
the following files (Replace <CRL_FILENAME> with the URL or file path of the CRL location):
a. <DDF_HOME>/etc/ws-security/server/encryption.properties
b. <DDF_HOME>/etc/ws-security/issuer/encryption.properties
c. <DDF_HOME>/etc/ws-security/server/signature.properties

<DDF_HOME>/etc/ws-security/issuer/signature.properties

78

https://www.openssl.org/source/

3. (Heplace <CRL_FILENAME> with the file path or URL of the CRL file used in previous step.)

Adding this property will also enable CRL revocation for any context policy implementing PKI
authentication. For example, adding an authentication policy in the Web Context Policy Manager of
/search=SAML | PKI will disable basic authentication, require a certificate for the search Ul, and allow a
SAML SSO session to be created. If a certificate is not in the CRL, it will be allowed through, otherwise it
will get a 401 error. If no certificate is provided, the guest handler will grant guest access.

This also enables CRL revocation for the STS endpoint. The STS CRL Interceptor monitors the same
encryption.properties file and operates in an identical manner to the PKI Authenication’s CRL handler.
Enabling the CRL via the encryption.properties file will also enable it for the STS, and also requires a
restart.

If the CRL cannot be placed in <DDF_HOME>/etc/keystores but can be accessed via an HTTPS URL:

1. Navigate to the Admin Console.

2. Navigate to System — Configuration - Certificate Revocation List (CRL)
3. Add the HTTPS URL under CRL URL address

4. Check the Enable CRL via URL option

A local CRL file will be created and the encryption.properties and signature.properties files will be set
as mentioned above.

Add Revocation to a Web Context

The PKIHandler implements CRL revocation, so any web context that is configured to use PKI
authentication will also use CRL revocation if revocation is enabled.
1. After enabling revocation (see above), open the Web Context Policy Manager.

2. Add or modify a Web Context to use PKI in authentication. For example, enabling CRL for the
search ui endpoint would require adding an authorization policy of /search=SAML | PKI

3. If guest access is required, add GUEST to the policy. EX, /search=SAML | PKI | GUEST.

With guest access, a user with a revoked certificate will be given a 401 error, but users without a
certificate will be able to access the web context as the guest user.

The STS CRL interceptor does not need a web context specified. The CRL interceptor for the STS will
become active after specifying the CRL file path, or the URL for the CRL, in the encryption.properties
file and restarting DDF.

Disabling or enabling CRL revocation or modifying the CRL file will require a restart of

NOTE DDF to apply updates. If CRL checking is already enabled, adding a new context via the
Web Context Policy Manager will not require a restart.

79

Adding Revocation to an Endpoint

This section explains how to add CXF’s CRL revocation method to an endpoint and not

NOTE
the CRL revocation method in the PKIHandler.

This guide assumes that the endpoint being created uses CXF and is being started via Blueprint from
inside the OSGi container. If other tools are being used the configuration may differ.

Add the following property to the jasws endpoint in the endpoint’s blueprint.xml:

<entry key="ws-security.enableRevocation" value="true"/>

Example xml snippet for the jaxws:endpoint with the property:

<jaxws:endpoint id="Test" implementor="#testImpl"
wsdlLocation="classpath:META-INF/wsd1/TestService.wsdl"
address="/TestService">

<jaxws:properties>
<entry key="ws-security.enableRevocation" value="true"/>
</jaxws:properties>
</jaxws:endpoint>

Verifying Revocation

A Warning similar to the following will be displayed in the logs of the source and endpoint showing
the exception encountered during certificate validation:

80

11:48:00,016 | WARN | tp2085517656-302 | WSS4JInInterceptor |
ecurity.wss4j.WSS4JInInterceptor 330 | 164 - org.apache.cxf.cxf-rt-ws-security - 2.7.3 |
org.apache.ws.security.WSSecurityException: General security error (Error during
certificate path validation: Certificate has been revoked, reason: unspecified)

at
org.apache.ws.security.components.crypto.Merlin.verifyTrust(Merlin.java:838)[167:0rg.apac
he.ws.security.wss4j:1.6.9]

at
org.apache.ws.security.validate.SignatureTrustValidator.verifyTrustInCert(SignatureTrustV
alidator.java:213)[161:0rg.apache.ws.security.wss4j:1.6.9]

[... section removed for space]

Caused by: java.security.cert.CertPathValidatorException: Certificate has been revoked,
reason: unspecified

at
sun.security.provider.certpath.PKIXMasterCertPathValidator.validate(PKIXMasterCertPathVal
idator.java:139)[:1.6.0_33]

at
sun.security.provider.certpath.PKIXCertPathValidator.doValidate(PKIXCertPathValidator.jav
a:330)[:1.6.0_33]

at
sun.security.provider.certpath.PKIXCertPathValidator.engineValidate(PKIXCertPathValidator
.java:178)[:1.6.0_33]

at
java.security.cert.CertPathValidator.validate(CertPathValidator.java:250)[:1.6.0_33]

at
org.apache.ws.security.components.crypto.Merlin.verifyTrust(Merlin.java:814)[167:0rg.apac
he.ws.security.wss4j:1.6.9]

... 45 more

7.4.9.2. Managing an Online Certificate Status Protocol (OCSP) Server

An Online Certificate Status Protocol is a protocol used to verify the revocation status of a certificate.
An OCSP server can be queried with a certificate to verify if it is revoked.

The advantage of using an OCSP Server over a CRL is the fact that a local copy of the revoked
certificates is not needed.

7.4.9.2.1. Enabling OCSP Revocation

1. Navigate to the Admin Console.
2. Navigate to System — Configuration - Online Certificate Status Protocol (OCSP).
3. Add the URL of the OCSP server under OCSP server URL.

4. Check the Enable validating a certificate against an OCSP server option.

81

If an error occurs while communicating with the OCSP server, an alert will be posted to
NOTE the Admin Console. Until the error is resolved, certificates will not be verified against
the server.

7.5. Configuring Data Management

Data ingested into DDF has security attributes that can be mapped to users' permissions to ensure
proper access. This section covers configurations that ensure only the appropriate data is contained in
or exposed by DDF.

7.5.1. Configuring Solr

The default catalog provider for DDF is Solr. If using another catalog provider, see Changing Catalog
Providers.

7.5.1.1. Configuring Solr Catalog Provider Synonyms

When configured, text searches in Solr will utilize synonyms when attempting to match text within the
catalog. Synonyms are used during keyword/anyText searches as well as when searching on specific
text attributes when using the 1like / contains operator. Text searches using the equality / exact match
operator will not utilize synonyms.

Solr utilizes a synonyms.txt file which exists for each Solr core. Synonym matching is most pertinent to
metacards which are contained within 2 cores: catalog and metacard_cache.

7.5.1.1.1. Defining synonym rules in the Solr Provider

» Edit the synonyms. txt file under the catalog core. For each synonym group you want to define, add a
line with the synonyms separated by a comma. For example:

United States, United States of America, the States, US, U.S., USA, U.S.A

» Save the file
» Repeat the above steps for the metacard_cache core.

¢ Restart the DDF.

NOTE Data does not have to be re-indexed for the synonyms to take effect.

7.5.1.2. Hardening Solr

The following sections provide hardening guidance for Solr; however, they are provided only as
reference and additional security requirements may be added.

82

7.5.1.2.1. Hardening Solr Server Configuration

The Solr server configuration is configured to be secure by default. No additional hardening should be
necessary. The default configuration starts Solr with TLS enabled and basic authentication required.
That means DDF must trust Solr’s PKI certificate.

7.5.1.2.2. Solr Server Password Management

By default, DDF is configured to use Solr server. To verify this, view the property solr.client. If the
property is set to HttpSolr(Client, DDF is configured to use Solr server.

To ensure the security of its communication with Solr server, DDF sends HTTP requests over TLS. Solr
is configured to use basic authentication to further ensure the requests originated from DDF. There are
several system properties that control basic authentication and password management.

* solr.useBasicAuthSend basic authentication header if property is true

e solr.usernameUsername for basic authentication with Solr server.

* solr.passwordPassword for basic authentication.

solr.attemptAutoPasswordChange If this property is true, DDF attempts to change the default
password to a randomly generated secure password if it detects the default password is in use. The
new password is encrypted and then stored in the system properties.

The Solr distrubition included with DDF comes already configured with a user. To see the username or
default password, either inspect the file <DDF_HOME>/etc/custom.system.properties or refer to the
properties here.

A limitation of the current implementation is that the Solr password is not recoverable. Further, the
migration command does not currently migrate the password. It may be necessary to reset the
password:

» After a migration.
o If the administator needs access to the Solr admin UI.

* If the administator wants to use their own password.

Do not Autogenerate a Solr Password

1. To prevent DDF from attempting to change the password set the property
solr.attemptAutoPasswordChange to false in the file <DDF_HOME>/etc/custom.system.properties

Change the Password to a Specific String

1. To change the Solr password to a specific string, send Solr an HTTP POST request. This is covered in
the official Solr documentation . Here is an example that uses the command line utility curl to
change the password from admin to newpassword:

83

http://lucene.apache.org/solr/resources.html

curl -k -u "admin:admin" "https://{FQDN}:{PORT}/solr/admin/authentication" -H
'Content-type:application/json' -d "{ 'set-user': {'admin' : '"newpassword'}}"

2. Encrypt the password using the Encryption Service. The encryption command enciphers the
password. It is safe to save the peristed password in a file.

3. Update property solr.password in the file <DDF_HOME>/etc/custom.system.properties” to be the
ouput from the encryption command. Be sure to include ENC(and) characters produced by the
encryption comand. Note that the default password is not enclosed in ENC() because that is not
necessary for cleartext. Cleartext is used by the system exactly as it appears. follow these
instructions.

4. Finally, restart DDF

Restore the Default Password in Solr
1. Restore the <DDF_HOME>/solr/server/solr/security.json from a zip file of the DDF distribution.
OR
1. Edit the <DDF_HOME>/solr/server/solr/security.json file. Solr stores a salted hash of the user

passwords in this file.

2. Assuming the Solr username is admin, change the credentials section to match this string:

"credentials": {
"admin": "Ejj0S/zyQ1KQQdSXFb/rFm7w6MItU5pmdthM35Z1JaA=
Z717d4jf/8hz50Zz71jBE6+uviwgncj+VudX3arbib4="}

The quoted string following the username admin is the salted hash for the password admin.

3. Edit the file <DDF_HOME>/etc/custom.system.properties and change the value of solr.password to
admin.

4. Optional: Prevent DDF from automatically changing the Solr password.

Removing Basic Authentication from Solr

To disable Solr’s basic authentication mechanism, rename or remove the file
<DDF_HOME>/solr/server/solr/security.json and restart Solr. The file security.json configures Solr to
use basic authetnication and defines Solr users. If the file is not present, Solr requires no login. This
could a security issue in many environments and it is recommended to never disable Solr
authentication in an operational environment. If authentication is disabled, the system property
solr.useBasicAuth may be set to false.

84

7.5.1.2.3. Configuring Solr Encryption

While it is possible to encrypt the Solr index, it decreases performance significantly. An encrypted Solr
index also can only perform exact match queries, not relative or contextual queries. As this drastically
reduces the usefulness of the index, this configuration is not recommended. The recommended
approach is to encrypt the entire drive through the Operating System of the server on which the index
is located.

7.5.1.3. Accessing the Solr Admin UI

The Solr Admin UI for Solr server configurations is generally inaccessible through a web browser. A
web browser can be configured to access the Solr Admin Ul if required.

7.5.1.3.1. Configuring a Browser to Access Solr Admin UI

The Solr server configuration is secure by default. Solr server requires a TLS connection with client
authentication. Solr only allows access to clients that present a trusted certificate.

7.5.1.3.2. Using DDF Keystores

Solr server uses the same Kkeystores as DDF. A simple way to enable access to the Solr Admin UI is to
install DDF’s own private key/certificate entry into a browser. The method to export DDF’s private
key/certificate entry depend on the type of keystore being used. The method to import the private
key/certificate entry into the browser depends on the operating system, and the browser itself. For
more information consult the browser’s documentation.

If the browser is not correctly configured with a certificate that Solr trusts, the browser displays an
error message about client authentication failing, or a message that the client certificate is invalid.

7.5.1.3.3. Solr Admin UI’s URL

The Solr server’s URL is configured in DDF’s custom.system.properties file. See solr.http.url for more
information. An example of a typical URL for the Solr Admin Ul is https://hostname:8994.

7.5.2. Changing Catalog Providers
This scenario describes how to reconfigure DDF to use a different catalog provider.
This scenario assumes DDF is already running.

Uninstall Catalog Provider (if installed).

1. Navigate to the Admin Console.
2. Select the System tab.
3. Select the Features tab.

4. Find and Stop the installed Catalog Provider

Install the new Catalog Provider

85

https://hostname:8994

1. Navigate to the Admin Console.
2. Select the System tab.
3. Select the Features tab.

4. Find and Start the desired Catalog Provider.

7.5.3. Changing Hostname

By default, the STS server, STS client and the rest of the services use the system property
org.codice.ddf.system.hostname which is defaulted to localhost’ and not to the fully qualified domain
name of the DDF instance. Assuming the DDF instance is providing these services, the configuration
must be updated to use the fully qualified domain name as the service provider. If the DDF is being
accessed from behind a proxy or load balancer, set the system property
org.codice.ddf.external.hostname to the hostname users will be using to access the DDF.

This can be changed during [Initial Configuration or later by editing the
<DDF_HOME>/etc/custom.system.properties file.

7.5.4. Configuring Errors and Warnings

DDF performs several types of validation on metadata ingested into the catalog. Depending on need,
configure DDF to act on the warnings or errors discovered.

7.5.4.1. Enforcing Errors or Warnings

Prevent data with errors or warnings from being ingested at all.

Navigate to the Admin Console.

Select the Catalog application.

Select Configuration.

Select Metacard Validation Marker Plugin.
Enter ID of validator(s) to enforce.

Select Enforce errors to prevent ingest for errors.

N e ok W

Select Enforce warnings to prevent ingest for warnings.

7.5.4.2. Hiding Errors or Warnings from Queries

Prevent invalid metacards from being displayed in query results, unless specifically queried.

1. Navigate to the Admin Console.
2. Select the Catalog application.

3. Select Configuration.
4

. Select Catalog Federation Strategy.

5. Deselect Show Validations Errors to hide metacards with errors.

6. Deselect Show Validations Warnings to hide metacards with warnings.

7.5.4.3. Hiding Errors and Warnings from Users Based on Role

* Required Step for Security Hardening

Prevent certain users from seeing data with certain types of errors or warnings. Typically, this is used
for security markings. If the Metacard Validation Filter Plugin is configured to Filter errors and/or
Filter warnings, metacards with errors/warnings will be hidden from users without the specified user
attributes.

Navigate to the Admin Console.

Select the Catalog application.

Select Configuration.

Select Metacard Validation Filter Plugin.

S A

For Attribute map, enter both the metacard SECURITY attribute to filter and the user attribute to
filter.

a. The default attribute for viewing invalid metacards is invalid-state
1. invalid-state=<USER ROLE>.

ii. Replace <USER ROLE> with the roles that should be allowed to view invalid metacards.

To harden the system and prevent other DDF systems from querying invalid
NOTE data in the local catalog, it is recommended to create and set user roles that
are unique to the local system (ie. a user role that includes a UUID).

6. Select Filter errors to filter errors. Users without the invalid-state attribute will not see
metacards with errors.

7. Select Filter warnings to filter warnings. Users without the invalid-state attribute will not see
metacards with warnings.

7.5.5. Content Directory Monitor

The Content Directory Monitor (CDM) provides the capability to easily add content and metacards into
the Catalog by placing a file in a directory.

7.5.5.1. Installing the Content Directory Monitor

The Content Directory Monitor is installed by default with a standard installation of the Catalog
application.

87

7.5.5.2. Configuring Permissions for the Content Directory Monitor

TIP If monitoring a WebDav server, then adding these permissions is not required and this
section can be skipped.

Configuring a Content Directory Monitor requires adding permissions to the Security Manager before

CDM configuration.

Configuring a CDM requires adding read and write permissions to the directory being monitored. The
following permissions, replacing <DIRECTORY_PATH> with the path of the directory being monitored,
are required for each configured CDM and should be placed in the CDM section inside
<DDF_HOME>/security/configurations.policy.

Adding New Permissions
WARNING , o , _
After adding permissions, a system restart is required for them to take effect.

1. permission java.io.FilePermission "<DIRECTORY_PATH>", "read";

2. permission java.io.FilePermission "<DIRECTORY_PATH>${/}-", "read, write";

Trailing slashes after <DIRECTORY_PATH> have no effect on the permissions granted. For example,
adding a permission for "${/}test${/}path" and "${/}test${/}path${/}" are equivalent. The recursive forms
"${/}test${/}path${/}-", and "${/}test${/}path${/}${/}-" are also equivalent.

Line 1 gives the CDM the permissions to read from the monitored directory path. Line 2 gives the CDM
the permissions to recursively read and write from the monitored directory path, specified by the
directory path’s suffix "${/}-".

If a CDM configuration is deleted, then the corresponding permissions that were added should be
deleted to avoid granting unnecessary permissions to parts of the system.

7.5.5.3. Configuring the Content Directory Monitor

Content Directory Monitor Permissions

When configuring a Content Directory Monitor, make sure to set permissions on
the new directory to allow DDF to access it. Setting permissions should be done
before configuring a CDM. Also, don’t forget to add permissions for products
outside of the monitored directory. See Configuring Permissions for the Content
Directory Monitor for in-depth instructions on configuring permissions.

IMPORTANT

If there’s a metacard that points to a resource outside of the CDM, then you must

NOTE
configure the URL Resource Reader to be able to download it.

88

Monitoring Directories In Place

If monitoring a directory in place, then the URL Resource Reader must be
configured prior to configuring the CDM to allow reading from the configured
directory. This allows the Catalog to download the products.

WARNING

Configure the CDM from the Admin Console:

1. Navigate to the Admin Console.
2. Select the Catalog application.
3. Select the Configuration tab.

4. Select Catalog Content Directory Monitor.

See Content Directory Monitor configurations for all possible configurations.

7.5.5.4. Using the Content Directory Monitor

The CDM processes files in a directory, and all of its sub-directories. The CDM offers three options:

* Delete
* Move
* Monitor in place

Regardless of the option, the DDF takes each file in a monitored directory structure and creates a
metacard for it. The metacard is linked to the file. The behavior of each option is given below.

Delete

* Copies the file into the Content Repository.
* Creates a metacard in the Catalog from the file.

» Erases the original file from the monitored directory.

Move

* Copies the file into the directory .\ingested (this will double the disk space used)
* Copies the file into the Content Repository.
* Creates a metacard in the Catalog from the file.

* Erases the original file from the monitored directory.

Monitor in place

* Creates a metacard in the Catalog from the file.
* Creates a reference from the metacard to the original file in the monitored directory.

« If the original file is deleted, the metacard is removed from the Catalog.

89

+ If the original file is modified, the metacard is updated to reflect the new content.

* If the original file is renamed, the old metacard is deleted and a new metacard is created.

Parallel Processing

The CDM supports parallel processing of files (up to 8 files processed concurrently). This is configured
by setting the number of Maximum Concurrent Files in the configuration. A maximum of 8 is
imposed to protect system resources.

Read Lock

When the CDM is set up, the directory specified is continuously scanned, and files are locked for
processing based on the ReadLock Time Interval. This does not apply to the Monitor in place
processing directive. Files will not be ingested without having a ReadLock that has observed no change
in the file size. This is done so that files that are in transit will not be ingested prematurely. The
interval should be dependent on the speed of the copy to the directory monitor (ex. network drive vs
local disk). For local files, the default value of 500 milliseconds is recommended. The recommended
interval for network drives is 1000 - 2000 milliseconds. If the value provided is less than 100, 100
milliseconds will be used. It is also recommended that the ReadLock Time Interval be set to a lower
amount of time when the Maximum Concurrent Files is set above 1 so that files are locked in a timely
manner and processed as soon as possible. When a higher ReadLock Time Interval is set, the time it
takes for files to be processed is increased.

Attribute Overrides

The CDM supports setting metacard attributes directly when DDF ingests a file. Custom overrides are
entered in the form:

attribute-name=attribute-value
For example, to set the contact email for all metacards, add the attribute override:
contact.point-of-contact-email=doctor@clinic.com

Each override sets the value of a single metacard attribute. To set the value of an additional attribute,
select the "plus" icon in the UI This creates an empty line for the entry.

To set multi-valued attributes, use a separate override for each value. For example, to add the
keywords PPI and radiology to each metacard, add the custom attribute overrides:

topic.keyword=PPI
topic.keyword=radiology

Attributes will only be overridden if they are part of the metacard type or are injected.

All attributes in the catalog taxonomy tables are injected into all metacards by default and can be
overridden.

90

mailto:doctor@clinic.com

If an overridden attribute is not part of the metacard type or injected the

IMPORTANT
attribute will not be added to the metacard.

For example, if the metacard type contains contact email,
contact.point-of-contact-email

but the value is not currently set, adding an attribute override will set the attribute value. To override
attributes that are not part of the metacard type, attribute injection can be used.

Blacklist

The CDM blacklist wuses the "bad.files" and "bad.file.extensions" properties from the
custom.system.properties file in "etc/" in order to prevent malicious or unwanted data from being
ingested into DDF. While the CDM automatically omits hidden files, this is particularly useful when an
operating system automatically generates files that should not be ingested. One such example of this is
"thumbs.db" in Windows. This file type and any temporary files are included in the blacklist.

Errors

If the CDM fails to read the file, an error will be logged in the ingest log. If the directory monitor is
configured to Delete or Move, the original file is also moved to the \.errors directory.

Other

* Multiple directories can be monitored. Each directory has an independent configuration.

* To support the monitoring in place behavior, DDF indexes the files to track their names and
modification timestamps. This enables the Content Directory Monitor to take appropriate action
when files are changed or deleted.

* The Content Directory Monitor recursively processes all subdirectories.

7.5.6. Configuring System Usage Message

The Platform UI configuration contains the settings for displaying messages to users at login or in
banners in the headers and footers of all pages. For, example this configuration can provide warnings
that system usage is monitored or controlled.

Configuring System Usage Message

1. Navigate to the Admin Console.
. Select the Platform application.

. Select Configuration.

2

3

4. Select Platform UI Configuration.

5. Select Enable System Usage Message.
6

. Enter text in the remaining fields and save.

See the Platform UI for all possible configurations.

91

7.5.7. Configuring Data Policy Plugins

Configure the data-related policy plugins to determine the accessibility of data held by DDF.

7.5.7.1. Configuring the Metacard Attribute Security Policy Plugin

The Metacard Attribute Security Policy Plugin combines existing metacard attributes to make new
attributes and adds them to the metacard.

1. Navigate to the Admin Console.

2. Select the Catalog application tile

3. Select the Configuration tab

4. Select the Metacard Attribute Security Policy Plugin.
Sample configuration of the Metacard Attribute Security Policy Plugin.

To configure the plugin to combine the attributes sourceattributel and sourceattribute? into a new
attribute destinationattributel using the union, enter these two lines under the title Metacard Union
Attributes

Metacard Union Attributes
sourceattributel=destinationattributel

sourceattribute2=destinationattributel

See Metacard Attribute Security Policy Plugin configurations for all possible configurations.

7.5.7.2. Configuring the Metacard Validation Marker Plugin

By default, the Metacard Validation Marker Plugin will mark metacards with validation errors and
warnings as they are reported by each metacard validator and then allow the ingest. To prevent the
ingest of certain invalid metacards, the Metacard Validity Marker plugin can be configured to "enforce"
one or more validators. Metacards that are invalid according to an "enforced" validator will not be
ingested.

1. Navigate to the Admin Console.

2. Select the Catalog application.

3. Select the Configuration tab.

4. Select the Metacard Validity Marker Plugin.

a. If desired, enter the ID of any metacard validator to enforce. This will prevent ingest of
metacards that fail validation.

b. If desired, check Enforce Errors or Enforce Warnings, or both.

See Metacard Validity Marker Plugin configurations for all possible configurations.

92

7.5.7.3. Configuring the Metacard Validity Filter Plugin

The Metacard Validity Filter Plugin determines whether metacards with validation errors or warnings
are filtered from query results.

1. Navigate to the Admin Console.
2. Select the Catalog application.
3. Select the Configuration tab.
4. Select the Metacard Validity Filter Plugin.
a. Check Filter Errors to hide metacards with errors from users.

b. Check Filter Warnings to hide metacards with warnings from users.

See Metacard Validity Filter Plugin configurations for all possible configurations.

7.5.7.4. Configuring the XML Attribute Security Policy Plugin

The XML Attribute Security Policy Plugin finds security attributes contained in a metacard’s metadata.

1. Navigate to the Admin Console.
2. Select the Catalog application tile.
3. Select the Configuration tab.

4. Select the XML Attribute Security Policy Plugin configuration.

See XML Attribute Security Policy Plugin configurations for all possible configurations.

7.5.8. Configuring Data Access Plugins

Configure access plugins to act upon the rules and attributes configured by the policy plugins and user
attributes.

7.5.8.1. Configuring the Security Audit Plugin
The Security Audit Plugin audits specific metacard attributes.
To configure the Security Audit Plugin:

1. Navigate to the Admin Console.
2. Select Catalog application.
3. Select Configuration tab.

4. Select Security Audit Plugin.

Add the desired metacard attributes that will be audited when modified.

93

See Security Audit Plugin configurations for all possible configurations.

7.6. Configuring Security Policies

User attributes and Data attributes are matched by security policies defined within DDF.

7.6.1. Configuring the Web Context Policy Manager

The Web Context Policy Manager defines all security policies for REST endpoints within DDF. It
defines:

* the realms a context should authenticate against.
* the type of authentication that a context requires.

* any user attributes required for authorization.

See Web Context Policy Manager Configurations for detailed descriptions of all fields.

7.6.1.1. Authentication Types

As you add REST endpoints, you may need to add different types of authentication through the Web
Context Policy Manager.

Any web context that allows or requires specific authentication types should be added here with the
following format:

/<CONTEXT>=<AUTH_TYPE>|<AUTH_TYPE]| ...

Table 17. Default Types of Authentication

Authentication Description

Type

saml Activates single-sign on (SSO) across all REST endpoints that use SAML.

basic Activates basic authentication.

PKI Activates public key infrastructure authentication.

IdP Activates SAML Web SSO authentication support. Additional configuration is
necessary.

guest provides guest access

7.6.1.2. Required Attributes

The fields for required attributes allows configuring certain contexts to only be accessible to users with
pre-defined attributes. For example, the default required attribute for the /admin context is
role=system-admin, limiting access to the Admin Console to system administrators

94

7.6.1.3. White Listed Contexts

White listed contexts are trusted contexts which will bypass security. Any sub-contexts of a white listed
context will be white listed as well, unless they are specifically assigned a policy.

7.6.2. Configuring Catalog Filtering Policies

Filtering is the process of evaluating security markings on data products, comparing them to the users
permissions and protecting resources from inappropriate access.

There are two options for processing filtering policies: internally, or through the use of a policy
formatted in eXtensible Access Control Markup Language (XACML). The procedure for setting up a
policy differs depending on whether that policy is to be used internally or by the external XACML
processing engine.

7.6.2.1. Setting Internal Policies

Navigate to the Admin Console.
Select the Security application.
Click the Configuration tab.

Click on the Security AuthZ Realm configuration.

ik W b P

Add any attribute mappings necessary to map between subject attributes and the attributes to be
asserted.

a. For example, the above example would require two Match All mappings of
subjectAttributel=assertedAttributel and subjectAttribute2=assertedAttribute2®

b. Match One mappings would contain subjectAttribute3=assertedAttribute3 and
subjectAttributed=assertedAttribute4.

With the security-pdp-authz feature configured in this way, the above Metacard would be displayed to
the user. Note that this particular configuration would not require any XACML rules to be present. All
of the attributes can be matched internally and there is no reason to call out to the external XACML
processing engine. For more complex decisions, it might be necessary to write a XACML policy to
handle certain attributes.

7.6.2.2. Setting XACML Policies

To set up a XACML policy, place the desired XACML policy in the <distribution root>/etc/pdp/policies
directory and update the included access-policy.xml to include the new policy. This is the directory in
which the PDP will look for XACML policies every 60 seconds.

See Developing XACML Policies for more information about custom XACML policies.

95

7.6.2.3. Catalog Filter Policy Plugins

Several Policy Plugins for catalog filtering exist currently: Metacard Attribute Security Policy Plugin
and XML Attribute Security Policy Plugin. These Policy Plugin implementations allow an administrator
to easily add filtering capabilities to some standard Metacard types for all Catalog operations. These
plugins will place policy information on the Metacard itself that allows the Filter Plugin to restrict
unauthorized users from viewing content they are not allowed to view.

7.7. Configuring User Interfaces

DDF has several user interfaces available for users.

7.7.1. Configuring Intrigue

Start here to configure Intrigue.

7.7.1.1. Configuring Default Layout for Intrigue

Intrigue includes several options for users to display search results. By default, users start with a 3D
map and an Inspector to view details of results or groups of results. Add or remove additional
visualizations to the default view through the Default Layout Ul Users can customize their
individual views as well.

Available Visualizations
3D Map (Default)

Display a fully-interactive three-dimensional globe.

2D Map

Display a less resource-intensive two-dimensional map.

Inspector (Default)

Display a view of detailed information about a search result.

Histogram

Compare attributes of items in a search result set as a histogram.

Table

Compare attributes of items in a search result set as a table.
Configuring Visualizations
1. Navigate to the Admin Console.
2. Select the Search UI application.
3. Select the Default Layout tab.

4, Add or Remove visualizations as desired.

96

a. To add a visualization, select the Add icon.
b. To remove a visualization, select the Delete icon on the tab for that visualization.

5. Select Save to complete.

7.7.1.2. Configuring Map Layers for Intrigue

Customize the look of the map displayed to users in Intrigue by adding or removing map layers
through the Map Layers Ul Equivalent addition and deletion of a map layer can be found in Map
Configuration for Intrigue.

1. Navigate to the Admin Console.

2. Select the Catalog application.

3. Select the Map Layers tab.

4. Add, Configure or Remove map layers as desired.
Adding a Map Layer (Imagery Provider)

Adding a Map Layer translates to adding an Imagery Provider

1. Enter a unique alphanumeric Name (no special characters).
2. Enter the Provider URL for the server hosting the map layer instance.

3. Select Proxy if security policies or the tile server does not allow Cross-Origin Resource Sharing
(CORS).

4. Select Allow Credential Formatting if map layer server prompts for credentials.
a. If selected, requests will fail if the server does not prompt for credentials.

5. Select from the list of available Provider Types.

6. Select a value for the Alpha to set the overall opacity of the map layer.
a. Setting Alpha to 0 will prevent the layer from loading.

7. Select Show to make the layer visible in Intrigue. (Deselect to hide.)

8. Select Transparent if tile images contain transparency.

Deleting a Map Layer

1. Delete an unneeded map layer with the Delete Layer([l) icon associated with that layer.
To remove all map layers, select RESET.

Reordering Map Layers

1. Move layers Up and Down in loading order with the Arrow Icons associated with each layer.

Map Layer Advanced Configuration
Select Advanced Configuration to edit the JSON-formatted configuration directly. See Catalog UI

97

Search Configurations for examples of map layer configurations.

External links to the specific API documentation of the map layer is also available from the Advanced
Configuration menu.

7.7.1.3. Map Configuration for Intrigue

Customize the look of the map displayed to users in Intrigue through the Catalog UI Search.
Equivalent addition and deletion of a map layer can be found in Configuring Map Layers for Intrigue.
1. Navigate to the Admin Console.
2. Select the Search UI application.
3. Select the Configuration tab.

4. Select the Catalog UI Search configuration.

Edit a Map Layer (Imagery Provider)

1. Enter the properties of the map layer into the Imagery Provider in the proper syntax.

a. Example Imagery Provider Syntax: {"type": "OSM", "url" "http://a.tile.openstreetmaps.org"
"layers" ["layer1" "layer2"] "parameters" {"FORMAT" "image/png" "VERSION" "1.1.1"} "alpha"

0.5}.
L. "type": format of imagery provider.
ii. "url": location of server hosting the imagery provider.
iii. "layers": names of individual layers. (enclose list in square brackets '[]").
iv. "parameters": (enclose in braces {})
A. "FORMAT": image type used by imagery provider.
B. "VERSION": version of imagery provider to use.
C. "alpha": opacity of imagery provider layer.
Delete a Map Layer (Imagery Provider)

1. Delete the properties in Imagery Provider text box.

Edit a Terrain Provider

1. Enter the properties into the Terrain Provider in the proper syntax.

a. A default Terrain Provider is provided: { "type": "CT", "url": "http://assets.agi.com/stk-
terrain/tilesets/world/tiles" }.

i "type": format of terrain provider.

ii. "url": location of server hosting the terrain provider.

Edit Gazetteer Configuration

1. Check/Uncheck Show Gazetteer to control searching place names functionality.

98

2. Check/Uncheck Use Online Gazetteer to control Intrigue search gazetteer.

a. Unchecked: use local gazetteer service.

7.7.1.4. Configuring User Access to Ingest and Metadata for Intrigue

Intrigue lets the administrator control user access to ingest and metadata. The administrator can show
or hide the uploader, letting them control whether users can ingest products. They can also choose
whether or not users can edit existing metadata. By default, the uploader is available to users and
editing is allowed.

Configuring The Uploader

Choose to hide or show the uploader. Note that hiding the uploader will remove the users' ability to
ingest.

. Navigate to the Admin Console.

. Select the Search UI application.

. Select the Configuration tab.

1
2
3
4. Select Catalog Ul Search.
5. Select "Show Uploader".

6

. Select Save to complete.
Configuring Editing of Metadata
Allow or restrict the editing of metadata.
. Navigate to the Admin Console.
. Select the Search UI application.
. Select the Configuration tab.

1
2
3
4. Select Catalog UI Search.
5. Select "Allow Editing".

6

. Select Save to complete.

7.7.1.5. Configuring the Intrigue Upload Editor

The upload editor in Intrigue allows users to specify attribute overrides which should be applied on
ingest. Administrators control the list of attributes that users may edit and can mark certain attributes
as required. They may also disable the editor if desired.

Configure attribute list

1. Navigate to the Admin Console.
2. Select the Search UI application.

3. Select the Configuration tab.

99

4. Select Catalog UI Search.

5. Use the "Upload Editor: Attribute Configuration" field to configure the attributes shown in the
editor.

6. Use the "Upload Editor: Required Attributes" field to mark attributes as required.

7. Select Save to complete.
See Intrigue Configurations for more information regarding these configurations.

Disabling

The editor only appears if it has attributes to show. If the upload editing capability is not desired,
simply remove all entries from the attribute configuration and the editor will be hidden.

7.7.1.6. Configuring Search Options for Intrigue

Intrigue provides a few options to control what metacards may be searched. By default, the user can
perform searches that produce historical metacards, archived metacards, and metacards from the
local catalog. However, administrators can disable searching for any of these types of metacards.

Configuring Search Options

1. Navigate to the Admin Console.
. Select the Search UI application.

. Select the Configuration tab.

. Scroll down to the "Disable Local Catalog" option with the other options below it.

2

3

4. Select Catalog UI Search.

5

6. To disable searching for a metacard type, check the corresponding box.
7

. Select Save to complete.

7.7.1.7. Configuring Query Feedback for Intrigue
Intrigue provides an option to allow users to submit Query Feedback.

Configuring Query Feedback

1. First, configure the Email Service to point to a mail server. See Email Service Configurations.
. Navigate to the Admin Console.
. Select the Search UI application.

2
3
4. Select the Configuration tab.
5. Select Catalog UI Search.

6

. Select the Enable Query Feedback option to enable the query comments option for users in
Intrigue.

7. Add a Query Feedback Email Subject Template.

100

8. Add a Query Feedback Email Body Template. The template may include HTML formatting.

9. Add the Query Feedback Email Destination.

10.

Select the Save button.

Query Feedback Template Replacements

The following keywords in the templates will be replaced with submission-specific values, or
"Unknown" if unknown.

Template keyword

{{auth_username}}

{{username}}

{{email}}

{{workspace_id}}

{{workspace_name}}

{{query}}
{{query_initiated_time}}

{{query_status}}

{{query_results}}
{{comments}}

Submitting Query Feedback from Intrigue

1.

2.
3.
4.
3.

Perform a search on any workspace.

Select the 3 dots on the results tab.

Choose the Submit Feedback option.

Add comments in the input box.

Select the Send button.

Replacement value

Username of the security subsystem (see Security
Framework)

Username of the user who submitted the Query
Feedback

Email of the user who submitted the Query
Feedback

Workspace ID of the query
Workspace Name of the query
Query

Time of the query

Status of the query

Results of the query

Comments provided by the user about the query

See Catalog Ul Search Configurations for default Query Feedback configurations.

7.8. Configuring Federation

DDF is able to federate to other data sources, including other instances of DDF, with some simple
configuration.

101

7.8.1. Enable SSL for Clients

In order for outbound secure connections (HTTPS) to be made from components like Federated
Sources and Resource Readers configuration may need to be updated with keystores and security
properties. These values are configured in the <DDF_HOME>/etc/custom.system.properties file. The

following values can be set:

Property

javax.net.ssl.trus
tStore

javax.net.ssl.trus
tStorePassword

javax.net.ssl.keyS
tore

javax.net.ssl.keyS
torePassword

javax.net.ssl.keyS
toreType

https.cipherSuites

https.protocols

jdk.tls.client.pro
tocols

102

Sample Value

etc/keystores/serv
erTruststore.jks

changeit

etc/keystores/serv
erKeystore. jks

changeit
jks

TLS_DHE_RSA_WITH_A
ES_128_GCM_SHA256,
TLS_DHE_RSA_WITH_A
ES_128_CBC_SHA256,
TLS_DHE_RSA_WITH_A
ES_128_CBC_SHA,
TLS_ECDHE_ECDSA_WI
TH_AES_128_GCM_SHA
256,
TLS_ECDHE_RSA_WITH
_AES_128_GCM_SHA25
b

TLSv1.1,TLSv1.2

TLSv1.1,TLSv1.2

Description

The java keystore that contains the trusted public
certificates for Certificate Authorities (CA’s) that can be used
to validate SSL Connections for outbound TLS/SSL
connections (e.g. HTTPS). When making outbound secure
connections a handshake will be done with the remote
secure server and the CA that is in the signing chain for the
remote server’s certificate must be present in the trust store
for the secure connection to be successful.

This is the password for the truststore listed in the above
property

The keystore that contains the private key for the local
server that can be used for signing, encryption, and SSL/TLS.

The password for the keystore listed above
The type of keystore

The cipher suites that are supported when making outbound
HTTPS connections

The protocols that are supported when making outbound
HTTPS connections

The protocols that are supported when making inbound
HTTPS connections

Property Sample Value Description

jdk.tls.ephemeralD 'matched’ For X.509 certificate based authentication (of non-exportable

HKeySize cipher suites), the DH key size matching the corresponding
authentication key is used, except that the size must be
between 1024 bits and 2048 bits. For example, if the public
key size of an authentication certificate is 2048 bits, then the
ephemeral DH key size should be 2048 bits unless the cipher
suite is exportable. This key sizing scheme keeps the
cryptographic strength consistent between authentication
keys and key-exchange keys.

<DDF_HOME> Directory
DDF is installed in the <DDF_HOME> directory.

NOTE

7.8.2. Configuring HTTP(S) Ports
To change HTTP or HTTPS ports from the default values, edit the custom.system.properties file.

1. Open the file at <DDF_HOME>/etc/custom.system.properties

2. Change the value after the = to the desired port number(s):
a. org.codice.ddf.system.httpsPort=8993 to org.codice.ddf.system.httpsPort=<PORT>
b. org.codice.ddf.system.httpPort=8181to org.codice.ddf.system.httpPort=<PORT>

3. Restart DDF for changes to take effect.

Do not use the Admin Console to change the HTTP port. While the Admin
IMPORTANT Console’s Pax Web Runtime offers this configuration option, it has proven to be
unreliable and may crash the system.

7.8.3. Configuring HTTP Proxy

The platform-http-proxy feature proxies https to http for clients that cannot use HTTPS and should not
have HTTP enabled for the entire container via the etc/org.ops4j.pax.web.cfg file.

Enabling the HTTP Proxy from the Admin Console

1. Navigate to the Admin Console.
2. Select the System tab.

3. Select the Features tab.

4. Select platform-http-proxy.

5

. Select the Play button to the right of the word “Uninstalled”

Enabling the HTTP Proxy from the Command Console

103

* Type the command feature:install platform-http-proxy

Configuring HTTP Proxy Hostname

1. Select Configuration tab.
2. Select HTTP to HTTPS Proxy Settings
a. Enter the Hostname to use for HTTPS connection in the proxy.

3. Click Save changes.

o HTTP Proxy and Hostname
NOTE
The hostname should be set by default. Only configure the proxy if this is not working.

7.8.4. Federation Strategy

A federation strategy federates a query to all of the Remote Sources in the query’s list, processes the
results in a unique way, and then returns the results to the client. For example, implementations can
choose to halt processing until all results return and then perform a mass sort or return the results
back to the client as soon as they are received back from a Federated Source.

An endpoint can optionally specify the federation strategy to use when it invokes the query operation.
Otherwise, the Catalog provides a default federation strategy that will be used: the Catalog Federation
Strategy.

7.8.4.1. Configuring Federation Strategy

The Catalog Federation Strategy configuration can be found in the Admin Console.

1. Navigate to Admin Console.
2. Select Catalog
3. Select Configuration

4. Select Catalog Federation Strategy.
See Federation Strategy configurations for all possible configurations.

7.8.4.1.1. Catalog Federation Strategy

The Catalog Federation Strategy is the default federation strategy and is based on sorting metacards by
the sorting parameter specified in the federated query.

The possible sorting values are:

» metacard’s effective date/time
* temporal data in the query result

* distance data in the query result

104

 relevance of the query result
The supported sorting orders are ascending and descending.

The default sorting value/order automatically used is relevance descending.

The Catalog Federation Strategy expects the results returned from the Source to be
sorted based on whatever sorting criteria were specified. If a metadata record in
the query results contains null values for the sorting criteria elements, the Catalog
Federation Strategy expects that result to come at the end of the result list.

WARNING

7.8.5. Connecting to Sources

A source is a system consisting of a catalog containing Metacards.

Catalog sources are used to connect Catalog components to data sources, local and remote. Sources act

as proxies to the actual external data sources, e.g., a RDBMS database or a NoSQL database.

Types of Sources

Remote Source

Read-only data sources that support query operations but cannot be used to create, update, or
delete metacards.

Federated Sources

A federated source is a remote source that can be included in federated queries by request or as
part of an enterprise query. Federated sources support query and site information operations only.
Catalog modification operations, such as create, update, and delete, are not allowed. Federated
sources also expose an event service, which allows the Catalog Framework to subscribe to event
notifications when metacards are created, updated, and deleted.

Catalog instances can also be federated to each other. Therefore, a Catalog can also act as a
federated source to another Catalog.

Connected Sources

A Connected Source is a local or remote source that is always included in every local and enterprise
query, but is hidden from being queried individually. A connected source’s identifier is removed in
all query results by replacing it with DDF’s source identifier. The Catalog Framework does not
reveal a connected source as a separate source when returning source information responses.

Catalog Providers

A Catalog Provider is used to interact with data providers, such as files systems or databases, to
query, create, update, or delete data. The provider also translates between DDF objects and native
data formats.

All sources, including federated source and connected source, support queries, but a Catalog

105

provider also allows metacards to be created, updated, and deleted. A Catalog provider typically
connects to an external application or a storage system (e.g., a database), acting as a proxy for all
catalog operations.

Catalog Stores
A Catalog Store is an editable store that is either local or remote.

Available Federated Sources

The following Federated Sources are available in a standard installation of DDF:

Federated Source for Atlassian Confluence®

Retrieve pages, comments, and attachments from an Atlassian Confluence® REST APIL

CSW Specification Profile Federated Source

Queries a CSW version 2.0.2 compliant service.

CSW Federation Profile Source

Queries a CSW version 2.0.2 compliant service.

GMD CSW Source
Queries a GMD CSW APISO compliant service.

OpenSearch Source

Performs OpenSearch queries for metadata.

WES 1.0 Source

Allows for requests for geographical features across the web.

WES 1.1 Source

Allows for requests for geographical features across the web.

WES 2.0 Source

Allows for requests for geographical features across the web.

Available Connected Sources

The following Connected Sources are available in a standard installation of DDF:

WES 1.0 Source

Allows for requests for geographical features across the web.

WES 1.1 Source

Allows for requests for geographical features across the web.

WES 2.0 Source

Allows for requests for geographical features across the web.

106

Available Catalog Stores

The following Catalog Stores are available in a standard installation of DDF:

Registry Store

Allows CSW messages to be turned into usable Registry metacards and for those metacards to be
turned back into CSW messages.

Available Catalog Providers

The following Catalog Providers are available in a standard installation of DDF:

Solr Catalog Provider

Uses Solr as a catalog.

Available Storage Providers

The following Storage Providers are available in a standard installation of DDF:

Content File System Storage Provider

.Sources Details Availability and configuration details of available sources.

7.8.5.1. Federated Source for Atlassian Confluence(R)

The Confluence source provides a Federated Source to retrieve pages, comments, and attachments
from an Atlassian Confluence® REST API and turns the results into Metacards the system can use. The
Confluence source does provide a Connected Source interface but its functionality has not been
verified.

Confluence Source has been tested against the following versions of Confluence with REST API v2

e Confluence 1000.444.5 (Cloud)
e Confluence 5.10.6 (Server)

e Confluence 5.10.7 (Server)

Installing the Confluence Federated Source

The Confluence Federated Source is installed by default with a standard installation in the Catalog
application.

Add a New Confluence Federated Source through the Admin Console:

1. Navigate to the Admin Console.
2. Select the Catalog application.
3. Select the Sources tab.

4. Add a New source.
5

. Name the New source.

107

6. Select Confluence Federated Source from Binding Configurations.

Configuring the Confluence Federated Source

Configure an Existing Confluence Federated Source through the Admin Console:

1. Navigate to the Admin Console.
2. Select the Catalog application.
3. Select the Sources tab.

4, Select the name of the source to edit.

See Confluence Federated Source configurations for all possible configurations.

If an additional attribute is not part of the Confluence metacard type or

IMPORTANT
injected, the attribute will not be added to the metacard.

Usage Limitations of the Confluence Federated Source

Most of the fields that can be queried on Confluence have some sort of restriction on them. Most of the
fields do not support the 1ike aka ~ operation so the source will convert like queries to equal queries
for attributes that don’t support like. If the source receives a query with attributes it doesn’t
understand, it will just ignore them. If the query doesn’t contain any attributes that map to Confluence
search attributes, an empty result set will be returned.

Depending on your version of Confluence, when downloading attachments you might get redirected to
a different download URL. The default URLResourceReader configuration allows redirects, but if the
option was disabled in the past, the download will fail. This can be fixed by re-enabling redirects in the
URLResourceReader configuration.

7.8.5.2. CSW Specification Profile Federated Source

The CSW Specification Profile Federated Source should be used when federating to an external (non-
DDF-based) CSW (version 2.0.2) compliant service.

Installing the CSW Specification Profile Federated Source
Add a New CSW Specification Profile Federated Source through the Admin Console:

. Navigate to the Admin Console.
. Select the Catalog application.

. Select the Sources tab.

1
2
3
4. Add a New source.
5. Name the New source.
6

. Select CSW Specification Profile Federated Source from Source Type.

108

Configuring the CSW Specification Profile Federated Source

Configure an Existing CSW Specification Profile Federated Source through the Admin Console:

1. Navigate to the Admin Console.
2. Select the Catalog application.
3. Select the Sources tab.

4. Select the name of the source to edit.
See CSW Specification Profile Federated Source configurations for all possible configurations.

Usage Limitations of the CSW Specification Profile Federated Source

» Nearest neighbor spatial searches are not supported.

7.8.5.3. CSW Federation Profile Source

The CSW Federation Profile Source is DDF’s CSW Federation Profile which supports the ability to
search collections of descriptive information (metadata) for data, services, and related information
objects.

Use the CSW Federation Profile Source when federating to a DDF-based system.

Installing the CSW Federation Profile Source
Configure the CSW Federation Profile Source through the Admin Console:

Navigate to the Admin Console.
Select the Catalog application.
Add a New source.

Name the New source.

SR

Select CSW Specification Profile Federated Source from Source Type.

Configuring the CSW Federation Profile Source

Configure an Existing CSW Federated Source through the Admin Console:

1. Navigate to the Admin Console.
2. Select the Catalog application.
3. Select the Sources tab.

4. Select the name of the source to edit.
See CSW Federation Profile Source configurations for all possible configurations.

Usage Limitations of the CSW Federation Profile Source

109

* Nearest neighbor spatial searches are not supported.

7.8.5.4. Content File System Storage Provider

The Content File System Storage Provider is the default Storage Provider included with DDF

Installing the Content File System Storage Provider
The Content File System Storage Provider is installed by default with the Catalog application.

Configuring Content File System Storage Provider

To configure the Content File System Storage Provider:

1. Navigate to the Admin Console.
2. Select Catalog.
3. Select Configuration.

4. Select Content File System Storage Provider.

See Content File System Storage Provider configurations for all possible configurations.

7.8.5.5. GMD CSW Source

The Geographic MetaData extensible markup language (GMD) CSW source supports the ability to
search collections of descriptive information (metadata) for data, services, and related information
objects, based on the Application Profile ISO 19115/ISO19119 .

Use the GMD CSW source if querying a GMD CSW APISO compliant service.

Installing the GMD CSW APISO v2.0.2 Source
The GMD CSW source is installed by default with a standard installation in the Spatial application.

Configure a new GMD CSW APISO v2.0.2 Source through the Admin Console:

* Navigate to the Admin Console.
 Select the Catalog application.
 Select the Sources tab.

* Add a New source.

 Name the New source.

Select GMD CSW ISO Federated Source from Binding Configurations.

Configuring the GMD CSW APISO v2.0.2 Source

110

https://portal.opengeospatial.org/files/?artifact_id=6495

Configure an existing GMD CSW APISO v2.0.2 Source through the Admin Console:

* Navigate to the Admin Console.
 Select the Catalog application.
* Select the Sources tab.

» Select the name of the source to edit.

See GMD CSW APISO v2.0.2 Source configurations for all possible configurations.

7.8.5.6. OpenSearch Source

The OpenSearch source provides a Federated Source that has the capability to do OpenSearch queries
for metadata from Content Discovery and Retrieval (CDR) Search V1.1 compliant sources. The
OpenSearch source does not provide a Connected Source interface.

Installing an OpenSearch Source

The OpenSearch Source is installed by default with a standard installation in the Catalog application.
Configure a new OpenSearch Source through the Admin Console:

» Navigate to the Admin Console.
* Select the Catalog application.

* Select the Sources tab.

* Add a New source.

* Name the New source.

* Select OpenSearch Source from Binding Configurations.

Configuring an OpenSearch Source

Configure an existing OpenSearch Source through the Admin Console:

* Navigate to the Admin Console.

* Select the Catalog application.

Select the Sources tab.

Select the name of the source to edit.
See OpenSearch Source configurations for all possible configurations.

Using OpenSearch Source

Use the OpenSearch source if querying a CDR-compliant search service is desired.

Table 18. Query to OpenSearch Parameter Mapping

111

http://www.opensearch.org/Home

Element

searchTerms
routeTo
maxResults
count
startindex
maxTimeout
userDN

lat
lon
radius

box

geometry

polygon

start
end
filter

sort

112

OpenSearch HTTP
Parameter

q

src
mr
count
start
mt

dn
lat

lon

radius

bbox

geometry

polygon

dtstart
dtend
filter

sort

DDF Data Location

Pulled from the query and encoded in UTF-8.
Pulled from the query.

Pulled from the query.

Pulled from the query.

Pulled from the query.

Pulled from the query.

DDF subject

Pulled from the query if it is a point-radius query
and the radius is > 0.

If multiple point radius searches are encountered,
each point radius is converted to an approximate
polygon as geometry criteria.

Pulled from the query if it is a bounding-box
query.

Or else, calculated from the query if it is a single
geometry or polygon query and the
shouldConvertToBBox configuration option is true.
NOTE: Converting a polygon that crosses the
antimeridian to a bounding box will produce an
incorrect bounding box.

Or else, calculated from the query ifitis a
geometry collection and the shouldConvertToBBox
configuration option is true. Note: An
approximate bounding box is used to represent
the geometry collection encompassing all of the
geometries within it

Area between the geometries are also included in
the bounding box. Hence widen the search area.

Pulled from the DDF query and combined as a
geometry collection if multiple spatial query exist.

According to the OpenSearch Geo Specification
this is deprecated. Use the geometry parameter
instead.

Pulled from the query if the query has temporal
criteria for modified.
Pulled from the query.

Calculated from the query. Format: relevance or
date. Supports asc and desc using : as delimiter.

Usage Limitations of the OpenSearch Source

The OpenSearch source does not provide a Connected Source interface.

7.8.5.7. Registry Store

The Registry Store is the interface that allows CSW messages to be turned into usable Registry
metacards and for those metacards to be turned back into CSW messages.

Installing Registry Store
The Registry Store is installed by default with the Registry application.

Configuring Registry Store

To configure the Registry store:

1. Navigate to the Admin Console.
2. Select Registry.
3. Select the Remote Registries Tab and click the Add button.
a. ALTERNATIVELY: Select the Configuration Tab and select Registry Store.

7.8.5.8. Solr Catalog Provider

The Solr Catalog Provider is included with a standard installation of DDF. There are two configurations
available:

Solr Server (default)::

DDF is bundled with a distribution of Apache Solr. This distribution includes special JAR libraries used
by DDF. This DDF scripts manage the starting and stopping of the Solr server. Considerations include:

* No configuration necessary. Simply start DDF and DDF manages starting and stopping the Solr
server.
» Backup can be performed using DDF console’s backup command.

 This configuration cannot be scaled larger than the single Solr server.

All data is located inside the {$branding} home directory. If the Solr index grows large, the storage
volume may run low on space.

Installing Solr Server

No installation is required because DDF includes a distribution of Apache Solr.

Configuring Solr Server

No configuration.

113

Solr Cloud

Solr Cloud is a cluster of distributed Solr servers used for high availability and scalability. If the DDF
needs to be available with little or no downtime, then the Solr Cloud configuration should be used. The
general considerations for selecting this configuration are:

SolrCloud can scale to support over 2 billion indexed documents.

* Has network overhead and requires additional protection to be secure.

* Installation is more involved (requires Zookeeper)

* Configuration and administration is more complex due to replication, sharding, etc.
» No way to backup currently, but will automatically recover from system failure.

Configuration shared between Solr Server instances is managed by Zookeeper. Zookeeper helps
manage the overall structure.

Container(JVM) Solr Cloud
——————————————————— | el
| o |
I . ™) i [[
: | : Solr '
! DDF | | |

| I

I
http | !
| | Solr |
. I |
: i : i
|
| | Selr |
i (" ’ | | i
o I |

Solr Cloud Deployment

The instructions on setting up Solr Cloud for DDF only include setup in a *NIX

NOTE .
environment.

Solr Cloud Prerequisites

Before Solr Cloud can be installed:

* ZooKeeper 345 (Refer to https://zookeeper.apache.org/doc/r3.1.2/zookeeperStarted.html#
sc_Download for installation instructions.)

¢ *NIX environment

* JDK 8 or greater

114

https://zookeeper.apache.org/doc/r3.1.2/zookeeperStarted.html#sc_Download
https://zookeeper.apache.org/doc/r3.1.2/zookeeperStarted.html#sc_Download

A minimum of three Zookeeper nodes required. Three Zookeeper nodes are needed to
form a quorum. A three Zookeeper ensemble allows for a single server to fail and the

NOTE service will still be available. More Zookeeper nodes can be added to achieve greater
fault tolerance. The total number of nodes must always be an odd number. See Setting
Up an External Zoo Keeper Ensemble for more information.

Installing Solr Cloud

Before starting the install procedure, download the extension jars. The jars are needed to support
geospatial and xpath queries and need to be installed on every Solr server instance after the Solr Cloud
installation instructions have been followed.

The JARs can be found here:

a. http://artifacts.codice.org/service/local/repositories/releases/content/org/codice/thirdparty/jts/
1.14.0_1/jts-1.14.0_1.jar

b. http://artifacts.codice.org/service/local/artifact/maven/content?r=public&g=ddf.platform.solr&
a=solr-xpath&v=2.16.1

Repeat the following procedure for each Solr server instance that will be part of the Solr Cloud cluster:

1. Refer to https://cwiki.apache.org/confluence/display/solr/Apache+Solr+Reference+Guide for
installation instructions.

2. Copy downloaded jar files to: <SOLR_INSTALL_DIR>/server/solr-webapp/webapp/WEB-INF/1ib/

A minimum of two Solr server instances is required. Each Solr server instance must
have a minimum of two shards. Having two Solr server instances guarantees that at

NOTE
least one Solr server is available if one fails. The two shards enables the document
mapping to be restored if one shard becomes unavailable.
Configuring Solr Cloud

1. On the DDF server, edit <DDF_HOME>/etc/custom.system.properties:
a. Comment out the Solr Client Configuration for Http Solr Client section.
b. Uncomment the section for the Cloud Solr Client:

c. Set solr.cloud.zookeeper to <Z00KEEPER_1_HOSTNAME>:<PORT_NUMBER>,
<ZOOKEEPER_2 HOSTNAME>:<PORT_NUMBER>, <ZOOKEEPER_n_HOSTNAME>:<PORT_NUMBER>

d. Setsolr.data.dir to the desired data directory.

Solr Cloud System Properties
solr.client = CloudSolrClient

solr.data.dir = ${karaf.home}/data/solr
solr.cloud.zookeeper = zk1:2181,zk2:2181,zk3:2181

115

https://lucene.apache.org/solr/guide/7_4/setting-up-an-external-zookeeper-ensemble.html#SettingUpanExternalZooKeeperEnsemble-SettingupaZooKeeperEnsemble
https://lucene.apache.org/solr/guide/7_4/setting-up-an-external-zookeeper-ensemble.html#SettingUpanExternalZooKeeperEnsemble-SettingupaZooKeeperEnsemble
http://artifacts.codice.org/service/local/repositories/releases/content/org/codice/thirdparty/jts/1.14.0_1/jts-1.14.0_1.jar
http://artifacts.codice.org/service/local/repositories/releases/content/org/codice/thirdparty/jts/1.14.0_1/jts-1.14.0_1.jar
http://artifacts.codice.org/service/local/artifact/maven/content?r=public&g=ddf.platform.solr&a=solr-xpath&v=2.16.1
http://artifacts.codice.org/service/local/artifact/maven/content?r=public&g=ddf.platform.solr&a=solr-xpath&v=2.16.1
https://cwiki.apache.org/confluence/display/solr/Apache+Solr+Reference+Guide

7.8.5.9. WES 1.0 Source

The WFS Source allows for requests for geographical features across the web using platform-
independent calls.

A Web Feature Service (WFS) source is an implementation of the FederatedSource interface provided by
the DDF Framework.

Use the WFS Source if querying a WFS version 1.0.0 compliant service.

Installing the WFS v1.0.0 Source
The WFS v1.0.0 Source is installed by default with a standard installation in the Spatial application.

Configure a new WFS v1.0.0 Source through the Admin Console:

* Navigate to the Admin Console.

Select the Catalog application.
e Select the Sources tab.
¢ Add a New source.

Name the New source.

Select WFS v1.0.0 Source from Binding Configurations.

Configuring the WFS v1.0.0 Source

Configure an existing WFS v1.0.0 Source through the Admin Console:

» Navigate to the Admin Console.
 Select the Catalog application.
 Select the Sources tab.

» Select the name of the source to edit.

See WFS v.1.0 Federated Source configurations or WFS v1.0 Connected Source configurations for all
possible configurations.a

WEFS URL

The WFS URL must match the endpoint for the service being used. The type of service and version are
added automatically, so they do not need to be included. Some servers will throw an exception if they
are included twice, so do not include those.

The syntax depends on the server. However, in most cases, the syntax will be everything before the ?
character in the URL that corresponds to the GetCapabilities query.

116

Example GeoServer 2.5 Syntax

http://www.example.org:8080/geoserver/ows?service=wfs&version=1.0.0&request=GetCapabiliti
es

In this case, the WFS URL would be: http://www.example.org:8080/geoserver/ows

7.8.5.10. WES 1.1 Source

The WFS Source allows for requests for geographical features across the web using platform-
independent calls.

A Web Feature Service (WFS) source is an implementation of the FederatedSource interface provided by
the DDF Framework.

Use the WFS Source if querying a WFS version 1.1.0 compliant service.

Installing the WFS v1.1.0 Source
The WFS v1.1.0 Source is installed by default with a standard installation in the Spatial application.

Configure a new WFS v1.1.0 Source through the Admin Console:

» Navigate to the Admin Console.

 Select the Catalog application.

Select the Sources tab.

Add a New source.

Name the New source.

Select WFS v1.1.0 Source from Binding Configurations.

Configuring the WFS v1.1.0 Source

Configure an existing WFS v1.1.0 Source through the Admin Console:

» Navigate to the Admin Console.

Select the Catalog application.

¢ Select the Sources tab.

Select the name of the source to edit.
See WFS v.1.1 Federated Source configurations for all possible configurations.

WEFS URL

The WFS URL must match the endpoint for the service being used. The type of service and version are
added automatically, so they do not need to be included. Some servers will throw an exception if they

117

http://www.example.org:8080/geoserver/ows
http://www.example.org:8080/geoserver/ows
http://www.example.org:8080/geoserver/ows
http://www.example.org:8080/geoserver/ows
http://www.example.org:8080/geoserver/ows

are included twice, so do not include those.

The syntax depends on the server. However, in most cases, the syntax will be everything before the ?
character in the URL that corresponds to the GetCapabilities query.

Example GeoServer 2.12.1 Syntax

http://www.example.orq:8080/geoserver/wfs?service=wfs&version=1.1.0&request=GetCapabiliti
es

In this case, the WFS URL would be: http://www.example.org:8080/geoserver/wfs

Mapping Metacard Attributes to WFS Feature Properties for Queries

The WEFS v1.1.0 Source supports mapping metacard attributes to WFS feature properties for queries
(GetFeature requests) to the WFES server. The source uses a MetacardMapper service to determine how to
map a given metacard attribute in a query to a feature property the WEFS server understands. It looks
for a MetacardMapper whose getFeatureType() matches the feature type being queried. Any
MetacardMapper service implementation will work, but DDF provides one in the Spatial application
called Metacard to WES Feature Map.

7.8.5.11. WES 2.0 Source

The WEFS 2.0 Source allows for requests for geographical features across the web using platform-
independent calls.

Use the WFS Source if querying a WFS version 2.0.0 compliant service. Also see Working with WFS
Sources.

Installing the WFS v2.0.0 Source
The WFS v2.0.0 Source is installed by default with a standard installation in the Spatial application.

Configure a new WFS v2.0.0 Source through the Admin Console:

» Navigate to the Admin Console.

 Select the Catalog application.

Select the Sources tab.

Add a New source.

Name the New source.

Select WFS v2.0.0 Source from Binding Configurations.

Configuring the WFS v2.0.0 Source

Configure an existing WFS v2.0.0 Source through the Admin Console:

118

http://www.example.org:8080/geoserver/wfs
http://www.example.org:8080/geoserver/wfs
http://www.example.org:8080/geoserver/wfs
http://www.example.org:8080/geoserver/wfs
http://www.example.org:8080/geoserver/wfs

» Navigate to the Admin Console.

Select the Catalog application.

e Select the Sources tab.

Select the name of the source to edit.

See WFS v.2.0 Federated source configurations or WFS v2.0 Connected source configurations for all
possible configurations.

WEFS URL

The WFS URL must match the endpoint for the service being used. The type of service and version is
added automatically, so they do not need to be included. Some servers will throw an exception if they
are included twice, so do not include those.

The syntax depends on the server. However, in most cases, the syntax will be everything before the ?
character in the URL that corresponds to the GetCapabilities query.

Example GeoServer 2.5 Syntax

http://www.example.orq:8080/geoserver/ows?service=wfs&version=2.0.0&request=GetCapabiliti
es

In this case, the WFS URL would be

http://www.example.org:8080/geoserver/ows

Mapping WES Feature Properties to Metacard Attributes

The WFS 2.0 Source allows for virtually any schema to be used to describe a feature. A feature is
relatively equivalent to a metacard. The MetacardMapper was added to allow an administrator to
configure which feature properties map to which metacard attributes.

Using the WFS MetacardMapper

Use the WFS MetacardMapper to configure which feature properties map to which metacard attributes
when querying a WFS version 2.0.0 compliant service. When feature collection responses are returned
from WFS sources, a default mapping occurs which places the feature properties into metacard
attributes, which are then presented to the user via DDF. There can be situations where this automatic
mapping is not optimal for your solution. Custom mappings of feature property responses to metacard
attributes can be achieved through the MetacardMapper. The MetacardMapper is set by creating a feature
file configuration which specifies the appropriate mapping. The mappings are specific to a given
feature type.

Installing the WFS MetacardMapper

The WEFS MetacardMapper is is not installed by default with a standard application in the Spatial
application.

119

Configuring the WFS MetacardMapper

There are two ways to configure the MetcardMapper, one is to use the Configuration Admin available via
the Admin Console. Additionally, a feature.xml file can be created and copied into the "deploy"
directory.

Example WFES MetacardMapper Configuration

The following shows how to configure the MetacardMapper to be used with the sample data provided
with GeoServer. This configuration shows a custom mapping for the feature type ‘states’. For the given
type, we are taking the feature property ‘states.STATE_NAME’ and mapping it to the metacard attribute
‘title’. In this particular case, since we mapped the state name to title in the metacard, it will now be
fully searchable. More mappings can be added to the featurePropToMetacardAttrMap line through the
use of comma as a delimiter.

Example MetacardMapper Configuration Within a feature.xml file:

<feature name="geoserver-states" version="2.16.1"
description="WFS Feature to Metacard mappings for GeoServer Example
{http://www.openplans.org/topp}states">
<config name="org.codice.ddf.spatial.ogc.wfs.catalog.mapper.MetacardMapper-
geoserver.http://www.openplans.org/topp.states">
featureType = {http://www.openplans.org/topp}states
featurePropToMetacardAttrMap = states.STATE_NAME=title
</config>
</feature>

7.8.6. Configuring Endpoints

Configure endpoints to enable external systems to send and receive content and metadata from DDF.

7.8.6.1. Configuring Catalog REST Endpoint
The Catalog REST endpoint allows clients to perform operations on the Catalog using REST.
To install the Catalog REST endpoint:

1. Navigate to the Admin Console.
2. Select System.
3. Select Features.

4. Install the catalog-rest-endpoint feature.

The Catalog REST endpoint has no configurable properties. It can only be installed or uninstalled.

120

7.8.6.2. Configuring CSW Endpoint

The CSW endpoint enables a client to search collections of descriptive information (metadata) about
geospatial data and services.

To install the CSW endpoint:

1. Navigate to the Admin Console.
2. Select System.
3. Select Features.

4. Install the csw-endpoint feature.

The CSW endpoint has no configurable properties. It can only be installed or uninstalled.

7.8.6.3. Configuring FTP Endpoint

The FTP endpoint provides a method for ingesting files directly into the DDF Catalog using the FTP
protocol The files sent over FTP are not first written to the file system, as the Directory Monitor does,
but instead the FTP stream of the file is ingested directly into the DDF catalog, thus avoiding extra I/O
overhead.

To install the FTP endpoint:

1. Navigate to the Admin Console.
2. Select System.
3. Select Features.

4. Install the catalog-ftp feature.
To configure the FTP endpoint:

1. Navigate to the Admin Console.
2. Select System.
3. Select Features.

4. Select FTP Endpoint.
See FTP Endpoint configurations for all possible configurations.

7.8.6.4. Configuring KML Endpoint

Keyhole Markup Language (KML) is an XML notation for describing geographic annotation and
visualization for 2- and 3- dimensional maps.

The root network link will create a network link for each configured source, including the local
catalog. The individual source network links will perform a query against the OpenSearch Endpoint

121

periodically based on the current view in the KML client. The query parameters for this query are
obtained by a bounding box generated by Google Earth. The root network link will refresh every 12
hours or can be forced to refresh. As a user changes their current view, the query will be re-executed
with the bounding box of the new view. (This query gets re-executed two seconds after the user stops
moving the view.)

This KML Network Link endpoint has the ability to serve up custom KML style documents and Icons to
be used within that document. The KML style document must be a valid XML document containing a
KML style. The KML Icons should be placed in a single level directory and must be an image type (png,
jpg, tif, etc.). The Description will be displayed as a pop-up from the root network link on Google Earth.
This may contain the general purpose of the network and URLs to external resources.

To install the KML endpoint:

1. Navigate to the Admin Console.
2. Select System.
3. Select Features.

4. Install the spatial-kml feature.
To configure the KML endpoint:

1. Navigate to the Admin Console.
2. Select System.
3. Select Features.

4. Select KML Endpoint.

See KML Endpoint configurations for all possible configurations.

7.8.6.5. Configuring OpenSearch Endpoint

The OpenSearch endpoint enables a client to send query parameters and receive search results. This
endpoint uses the input query parameters to create an OpenSearch query. The client does not need to
specify all of the query parameters, only the query parameters of interest.

To install the KML endpoint:

1. Navigate to the Admin Console.
2. Select System.
3. Select Features.

4. Install the catalog-opensearch-endpoint feature.

The OpenSearch endpoint has no configurable properties. It can only be installed or uninstalled.

122

7.8.6.6. Configuring WPS Endpoint

The WPS endpoint enables a client to execute and monitor long running processes.
To install the WPS endpoint:

1. Navigate to the Admin Console.
2. Select System.
3. Select Features.

4. Install the spatial-wps feature.

The WPS endpoint has no configurable properties. It can only be installed or uninstalled.

7.8.6.7. Compression Services

DDF supports compression of outgoing and incoming messages through the Compression Services.
These compression services are based on CXF message encoding.

The formats supported in DDF are:

gzip
Adds GZip compression to messages through CXF components. Code comes with CXF.

exi

Adds Efficient XML Interchange (EXI) (' support to outgoing responses. EXI is an W3C standard for
XML encoding that shrinks xml to a smaller size than normal GZip compression.

To Install a compression service:

» Navigate to the Admin Console.

Select the System tab.

Select the Features tab.

Start the service for the desired compression format:

. compression-exi

. compression-gzip
The compression services either need to be installed BEFORE the desired CXF
WARNING service is started or the CXF service needs to be refreshed / restarted after the

compression service is installed.

Compression services have no configurable properties. They can only be installed or uninstalled.

123

http://cxf.apache.org/
http://www.w3.org/XML/EXI/

7.8.7. Federating Through a Registry

Another approach to configuring federation is to use the Registry application to locate sources in a
network/enterprise. See Registry Application Reference for details on installing the Registry

application. Use the registry to subscribe to and federate with other instances of DDF.

NOTE

application and the Catalog application.

NOTE

https:/{FQDN}:{PORT}/admin/federation.

7.8.7.1. Configuring Identity Node

The Node Information and Remote Registries tabs appear in both the Registry

For direct federation configuration, sources and registries can be configured at

The "Identity Node" is the local DDF instance. Configure the information to share with other

registries/nodes.

1. Navigate to Registry (or Catalog) application.

2. Navigate to Node Information tab.

3. Click the name of the identity node.

4. Complete all required and any desired optional fields.

a. Add any desired service bindings under the Services tab.

5. Click Save.

Table 19. General Information Tab

Field

Node Name

Node
Description

Node Version

Security
Attributes

Last Updated

Live Date

Custom Fields

Associations

124

Description

This node’s name as it should appear to external
systems

Short description for this node

This node’s Version

Security attributes associated with this node.

Date this entry’s data was last updated

Date indicating when this node went live or
operational

click Add button to add custom fields

click Add button to add associations

Type

string

string

string

String

Date
Date

Configurable

Configurable

Required
yes

yes

yes

no

no

https://{FQDN}:{PORT}/admin/federation

Table 20. Services

Field Description Type Required
Service Name This service name string

Service Short description for this service string

Description

Service Version This service version string

Service Type Identifies the type of service this is by a URN. string

Bindings (Click Add to add a service binding)

Binding Name This binding name String yes
Binding Short description for this binding String
Description

Binding Version This binding version

Access URL The URL used to access this binding

Service Binding The binding type for the service

Type

URL Property Property that the accessURL value should be put

Key into for source creation

Custom Fields click Add button to add custom fields Configurable no
Associations click Add button to add associations Configurable no

Table 21. Organizations Tab (click Add to add an organization)

Field Description Type Required

Organization This organization’s name string yes

Name

Address This organization’s primary address Expand to enter yes
address
information

Telephone Primary contact number for this organization no

Number

Email Primary contact email for this organization no

Custom Fields click Add button to add custom fields Configurable no

Associations click Add button to add associations Configurable no

Table 22. Contacts (click Add button to add contact info)

125

Field
Contact Title

Contact First
Name

Contact Last
Name

Address
Phone number
Email

Custom Fields

Associations

Description
Contact Title

Contact First Name

Contact Last Name

Address for listed contact
Contact phone number
Contact email

click Add button to add custom fields

click Add button to add associations

Table 23. Collections (Click Add to add Content Collection(s))

Field
Content Name

Content
Description

Content Object
Type
Custom Fields

Associations

Description
Name for this metadata content

Short description for this metadata content

The kind of content object this will be. Default
value should be used in most cases.

click Add button to add custom fields

click Add button to add associations

7.8.7.1.1. Adding a Service Binding to a Node

Type
String

String

String

String

String

Configurable

Configurable

Type
string

string

string

Configurable

Configurable

Advertise the methods other nodes use to connect to the local DDF instance.

N =

a. (Node Information tab is editable from either application.)

© N o ok W

126

. Navigate to Admin Console.

. Select Registry or Catalog.

Click the name of the desired local node.
Click the Services tab.

Click Add to add a service.

Expand new Service.

Enter Service name and details.

Click Add to add binding.

Required

yes
yes

yes

minimum one
minimum one
minimum one

no

no

Required
yes

no

yes

no

no

9.

10.

Select Service Binding type.
a. Select one of the defaults or empty for a custom service binding.
b. If selecting empty, fill in all required fields.

Click Save.

7.8.7.2. Publishing to Other Nodes

Send details about the local DDF instance to other nodes.

® N o ok~ w N

Navigate to the Remote Registries tab in either Registry or Catalog application.
Click Add to add a remote registry.

Enter Registry Service (CSW) URL.

Confirm Allow Push is checked.

Click Add to save the changes.

Navigate to the Sources Tab in Catalog App

Click desired node to be published.

Under Operations, click the *Publish to ... * link that corresponds to the desired registry.

7.8.7.3. Subscribing to Another Node

Receive details about another node.

1.

2
3
4.
5

Navigate to the Remote Registries tab in either Registry or Catalog application.

. Click Add to add a remote registry.
. Add the URL to access node.

Enter any needed credentials in the Username/password fields.

. Click Save/Add.

Editing a Subscription

Update the configuration of an existing subscription.

1
2.
3.
4.

Navigate to the Remote Registries tab in either Registry or Catalog application.
Click the name of the desired subscription.

Make changes.

Click Save.

Deleting a Subscription

Remove a subscription.

1.

Click the Delete icon at the top of the Remote Registries tab.

127

2. Check the boxes of the Registry Nodes to be deleted.

3. Select the Delete button.

7.9. Environment Hardening

* Required Step for Security Hardening

IMPORTANT It is recommended to apply the following security mitigations to the DDF.

7.9.1. Known Issues with Environment Hardening

The session timeout should be configured longer than the UI polling time or you may get session
timeout errors in the Ul

Protocol/ Risk Mitigation

Type

JMX tampering, information » Stop the management feature using the command line
disclosure, and unauthorized console: feature:stop management.
access

128

File
System
Access

tampering, information
disclosure, and denial of
service

Set OS File permissions under the <DDF_HOME> directory (e.g.
/deploy, /etc) to ensure unauthorized viewing and writing is
not allowed.

If Caching is installed:

* Set permissions for the installation directory
/data/product-cache such that only the DDF process and
users with the appropriate permissions can view any
stored product.

* Caching can be turned off as well to mitigate this risk.
- To disable caching, navigate to Admin Console.
> Select the Catalog application.
> Select Resource Download Settings.
o Uncheck the Enable Product Caching box.

* Install Security to ensure only the appropriate users are
accessing the products.

- Navigate to the Admin Console
> Select Manage.
- Install the Security application, if applicable.
* Cached files are written by the user running the DDF

process/application.

On system: ensure that not everyone can change ACLs on
your object.

129

SSH

130

tampering, information
disclosure, and denial of
service

By default, SSH access to DDF is only enabled to connections
originating from the same host running DDF. For remote
access to DDF, first establish an SSH session with the host
running DDF. From within that session, initiate a new SSH
connection (to localhost), and use the sshPort as configured
in the file <DDF_HOME>/etc/org.apache.karaf.shell.cfqg.

To allow direct remote access to the DDF shell from any
host, change the value of the sshHost property to 0.0.0.0 in
the <DDF_HOME>/etc/org.apache.karaf.shell.cfg file.

SSH can also be authenticated and authorized through an
external Realm, such as LDAP. This can be accomplished by
editing the <DDF_HOME>/etc/org.apache.karaf.shell.cfg file
and setting the value for sshRealm, e.g. to 1dap. No restart of
DDF is necessary after this change.

By definition, all connections over SSH will be authenticated
and authorized and secure from eavesdropping.

Enabling SSH will expose your file
system such that any user with access
to your DDF shell will have

WARNING

read/write/execute access to all
directories and files accessible to your
installation user.
Because of this, SSH is not
recommended in a secure
environment and should be turned
off in a fully hardened system.

Set karaf.shutdown.port=-1 in

<DDF_HOME>/etc/custom.properties or

<DDF_HOME>/etc/config.properties.

SSL/TLS

Session
Inactivit

y
Timeout

man-in-the-middle,
information disclosure

unauthorized access

Update the <DDF_HOME>/etc/org.ops4j.pax.web.cfq file to add
the entry org.ops4j.pax.web.ssl.clientauthneeded=true.

Setting this configuration may break
compatibility to legacy systems that do
not support two-way SSL.

WARNING

WARNING Setting this configuration will require a
certificate to be installed in the
browser.

Update the Session configuration to have no greater than a

10

minute Session Timeout.

Navigate to the Admin Console.
Select the Security application.
Select the Configuration tab.
Select Session.

Set Session Timeout (in minutes) to 10 (or less).

131

Shell command injection By default, some shell commands are disabled in order to

Comman secure the system. DDF includes a whitelist of allowed shell

d Access commands in
<DDF_HOME>/etc/org.apache.karaf.command.acl.shell.cfg

By default, this list includes commands that are whitelisted
only to administrators:

« complete
« echo

« format
o grep

o if

o keymap
o less

o Set

o Setopt
« Sleep

« tac

o WC

« while

« .1invoke

o Unsetopt

7.10. Configuring for Special Deployments

In addition to standard configurations, several specialized configurations are possible for specific uses
of DDF.

7.10.1. Multiple Installations

One common specialized configuration is installing multiple instances of DDF.

7.10.1.1. Reusing Configurations

The Migration Export/Import capability allows administrators to export the current DDF configuration
and use it to restore the same state for either a brand new installation or a second node for a Highly
Available Cluster.

There are some Kkey limitations when following this process to reuse

IMPORTANT configurations for a different versions of DDF. See Reusing Configurations
Across Different Versions below.

132

To export the current configuration settings:

1. Run the command migration:export from the Command Console.

2. Files named ddf-2.16.1.dar, ddf-2.16.1.dar.key, and ddf-2.16.17.dar.sha256 will be created in the
exported directory underneath <DDF_HOME>. The .dar file contains the encrypted information. The
.key and .sha256 files contains the encryption key and a validation checksum. Copy the '.dar’ file to
a secure location and copy the "key' and '.sha256' to a different secure location. Keeping all 3 files
together represents a security risk and should be avoided.

To import previously exported configuration settings:

1. Install DDF by unzipping its distribution.

2. Restore all external files, softlinks, and directories that would not have been exported and for
which warnings would have been generated during export. This could include (but is not limited
to) external certificates or monitored directories.

3. Launch the newly installed DDF.

4. Make sure to install and re-enable the DDF service on the new system if it was installed and
enabled on the original system.

5. Copy the previously exported files from your secure locations to the exported directory underneath
<DDF _HOME>.

6. Either:
a. Step through the installation process.
b. Run the command migration:import from the Command Console.

7. Or if an administrator wishes to restore the original profile along with the configuration
(experimental):

a. Run the command migration:import with the option --profile from the Command Console.
8. DDF will automatically restart if the command is successful. Otherwise address any generated

warnings before manually restarting DDF.

It is possible to decrypt the previously exported configuration settings but doing so is insecure and
appropriate measures should be taken to secure the resulting decrypted file. To decrypt the exported
file:

1. Copy all 3 exported files (i.e. .dar, .key, and .sha256) to the exported directory underneath
<DDF_HOME>.
2. Run the command migration:decrypt from the Command Console.

3. A file named ddf-2.16.1.zip will be created in the exported directory underneath <DDF_HOME>. This
file represents the decrypted version of the .dar file.

133

* The following is currently not supported when importing configuration
files:

o importing from a system installed on a different OS
o importing from a system installed in a different directory location

*» To keep the export/import process simple and consistent, all system
configuration files are required to be under the <DDF_HOME> directory and not
be softlinks. Presence of external files or symbolic links during export will
not fail the export; they will yield warnings. It will be up to the
administrator to manually copy these files over to the new system before

IMPORTANT proceeding with the import. The import process will verify their presence
and consistency and yield warnings if they don’t match the original files.

* The import process will restore all configurations done on the original
system as part of the hardening process including changes to starting scripts
and certificates.

» The import process can also restore the profile from the original system by
restoring all applications, features, and/or bundles to the same state (i.e.,
installed, uninstalled, started, stopped, ...) they were in originally. Doing so is
currently experimental and was tested only with the standard and HA
profiles.

7.10.1.1.1. Reusing Configurations Across Different Versions

The same step-by-step process above can be followed when migrating configurations between DDF
instances of different versions, with a few key constraints:
* Only a subset of configuration files are currently imported:
o Files under etc/ws-security
o Files under etc/pdp

o etc/users.attributes and etc/users.properties
. security/configurations.policy

o etc/custom.system.properties (the solr.password property will be preserved)
o Keystores

o Truststores

o Service wrapper *.conf files, if the DDF is installed as a service

» There is a list of specific DDF versions that have been tested that can be found in
etc/migration.properties under the property supported.versions, as a comma-delimited list. The
system will only allow importing configurations from those versions.

134

7.10.1.2. Isolating Solr Cloud and Zookeeper

* Required Step for Security Hardening (if using Solr Cloud/Zookeeper)

Zookeeper cannot use secure (SSL/TLS) connection. The configuration information that Zookeeper
sends and receives is vulnerable to network sniffing. Also, the connections between the local Solr
Catalog service and the Solr Cloud is not necessarily secure. The connections between Solr Cloud nodes
are not necessarily secure. Any unencrypted network traffic is vulnerable to sniffing attacks. To use
Solr Cloud and Zookeeper securely, these processes must be isolated on the network, or their
communications must be encrypted by other means. The DDF process must be visible on the network
to allow authorized parties to interact with it.

Examples of Isolation:

* Create a private network for Solr Cloud and Zookeeper. Only DDF is allowed to contact devices
inside the private network.

» Use IPsec to encrypt the connections between DDF, Solr Cloud nodes, and Zookeeper nodes.

» Put DDF, Solr Cloud and Zookeeper behind a firewall that only allows access to DDF.

7.10.2. Configuring for a Fanout Proxy

Optionally, configure DDF as a fanout proxy such that only queries and resource retrieval requests are
processed and create/update/delete requests are rejected. All queries are enterprise queries and no
catalog provider needs to be configured.

. Navigate to the Admin Console.

. Select the Catalog application.

. Select the Configuration tab.

1
2
3
4. Select Catalog Standard Framework.
5. Select Enable Fanout Proxy.

6

. Save changes.

DDF is now operating as a fanout proxy. Only queries and resource retrieval requests will be allowed.
All queries will be federated. Create, update, and delete requests will not be allowed, even if a Catalog
Provider was configured prior to the reconfiguration as a fanout.

7.10.3. Standalone Security Token Service (STS) Installation

To run a STS-only DDF installation, uninstall the catalog components that are not being used. The
following list displays the features that can be uninstalled to minimize the runtime size of DDF in an
STS-only mode. This list is not a comprehensive list of every feature that can be uninstalled; it is a list
of the larger components that can be uninstalled without impacting the STS functionality.

Unnecessary Features for Standalone STS

135

« catalog-core-standardframework
« catalog-opensearch-endpoint
« catalog-opensearch-souce

« catalog-rest-endpoint

7.10.4. Configuring for a Highly Available Cluster

This section describes how to make configuration changes after the initial setup for a DDF in a Highly
Available Cluster.

In a Highly Available Cluster, configuration changes must be made on both DDF nodes. The changes
can still be made in the standard ways via the Admin Console, the Command Line, or the file system.

Changes made in the Admin Console must be made through the HTTP proxy. This
means that the below steps should be followed to make a change in the Admin Console:
* Make a configuration change on the currently active DDF node

NOTE » Shut down the active DDF node, making the failover proxy switch to the standby
DDF node

* Make the same configuration change on the newly active DDF node

Start the DDF node that was just shut down

7.11. Configuring UI Themes

The optional configurations in this section cover minor changes that can be made to optimize DDF
appearance.

7.11.1. Landing Page

The Landing Page is the first page presented to users of DDF. It is customizable to allow adding
organizationally-relevant content.

7.11.1.1. Installing the Landing Page

The Landing Page is installed by default with a standard installation.

7.11.1.2. Configuring the Landing Page

The DDF landing page offers a starting point and general information for a DDF node. It is accessible at
/(index|home|landing(.htm|html)).

7.11.1.3. Customizing the Landing Page

Configure the Landing Page from the Admin Console:

136

1. Navigate to the Admin Console.
2. Select Platform Application.

3. Select Configuration tab.

4. Select Landing Page.

Configure important landing page items such as branding logo, contact information, description, and
additional links.

See Landing Page configurations for all possible configurations.

7.11.2. Configuring Logout Page

The logout pages is presented to users through the navigation of DDF and has a changeable timeout
value.

1. Navigate to the Admin Console.

2. Select Security Application.

3. Select Configuration tab.

4. Select Logout Page.
The customizable feature of the logout page is the Logout Page Time Out. This is the time limit the IDP

client will wait for a user to click log out on the logout page. Any requests that take longer than this
time for the user to submit will be rejected.

1. Default value: 3600000 (milliseconds)

See Logout Configuration for detailed information.

7.11.3. Platform UI Themes

The Platform UI Configuration allows for the customization of attributes of all pages within DDF. It
contains settings to display messages to users at login or in banners in the headers and footers of all
pages, along with changing the colors of text and backgrounds.

7.11.3.1. Navigating to Ul Theme Configuration

1. Navigate to the Admin Console.
2. Select the Platform application.
3. Select Configuration.

4. Select Platform UI Configuration.

137

7.11.3.2. Customizing the UI Theme

The customization of the UI theme across DDF is available through the capabilities of Platform UI
Configuration. The banner has four items to configure:

1. Header (text)
2. Footer (text)
3. Text Color

4. Background Color

See the Platform UI for all possible configurations of the Platform UI Configuration.

7.12. Miscellaneous Configurations

The optional configurations in this section cover minor changes that can be made to optimize DDF.

7.12.1. Configuring Thread Pools

The org.codice.ddf.system.threadPoolSize property can be used to specify the size of thread pools used
by:

* Federating requests between DDF systems
* Downloading resources

* Handling asynchronous queries, such as queries from the Ul

By default, this value is set to 128. It is not recommended to set this value extremely high. If unsure,
leave this setting at its default value of 128.

7.12.2. Configuring Jetty ThreadPool Settings

To prevent resource shortages in the event of concurrent requests, DDF allows configuring Jetty
ThreadPool settings to specify the minimum and maximum available threads.

1. The settings can be changed at etc/org.ops4j.pax.web.cfg under Jetty Server ThreadPool Settings.
2. Specify the maximum thread amount with org.ops4j.pax.web.server.maxThreads
3. Specify the minimum thread amount with org.ops4j.pax.web.server.minThreads

4. Specify the allotted time for a thread to complete with org.ops4j.pax.web.server.idleTimeout

DDF does not support changing ThreadPool settings from the Command Console or the Admin Console.

7.12.3. Configuring Alerts

By default, DDF uses two services provided by Karaf Decanter for alerts that can be configured by

138

configuration file. Further information on Karaf Decanter services and configurations can be found
here .

7.12.3.1. Configuring Decanter Service Level Agreement (SLA) Checker

The Decanter SLA Checker provides a way to create alerts based on configurable conditions in events
posted to decanter/collect/* and can be configured by editing the file
<DDF_HOME>/etc/org.apache.karaf.decanter.sla.checker.cfg. By default there are only two checks that
will produce alerts, and they are based on the SystemNotice event property of priority.

Table 24. Decanter SLA Configuration

Property Alert Level Expression Description

priority warn equal:1,2,4 Produce a warn level
alert if priority is
important (3)

priority error equal:1,2,3 Produce an error level
alert if priority is critical

4)

7.12.3.2. Configuring Decanter Scheduler

The Decanter Scheduler looks up services implementing the Runnable interface with the service-
property decanter.collector.name and executes the Runnable periodically. The Scheduler can be
configured by editing the file <DDF_HOME>/etc/org.apache.karaf.decanter.scheduler.simple.cfq.

Table 25. Decanter Scheduler Configuration

Property Name Description Default Value

period Decanter simple scheduler 300000 (5 minutes)
period (milliseconds)

threadIdleTimeout The time to wait before stopping 60000 (1 minute)
an idle thread (milliseconds)

threadInitCount Initial number of threads created 5
by the scheduler

threadMaxCount Maximum number of threads 200

created by the scheduler
7.12.4. Encrypting Passwords
DDF includes an encryption service to encrypt plain text such as passwords.

7.12.4.1. Encryption Command

An encrypt security command is provided with DDF to encrypt text. This is useful when displaying
password fields to users.

139

https://karaf.apache.org/documentation.html#decanter

Below is an example of the security:encrypt command used to encrypt the plain text
myPasswordToEncrypt.

1. Navigate to the Command Console.

security:encrypt Command Example

ddf@local>security:encrypt myPasswordToEncrypt

2. The output is the encrypted value.

security:encrypt Command Output

ddf@local>bRImIpDVo8bTRwqGwIFxHI5yFJzatKwjXjIo/8USWm8=

8. Running

Find directions here for running an installation of DDF.

Starting

Getting an instance of DDF up and running.

Managing Services

Running DDF as a managed service.

Maintaining

Keeping DDF running with useful tasks.

Monitoring

Tracking system health and usage.

Troubleshooting

Common tips for unexpected behavior.

8.1. Starting

8.1.1. Run DDF as a Managed Service

8.1.1.1. Running as a Service with Automatic Start on System Boot

Because DDF is built on top of Apache Karaf, DDF can use the Karaf Wrapper to run DDF as a service
and enable automatic startup and shutdown. When DDF is started using Karaf Wrapper, new
wrapper.log and wrapper.log.n (where n goes from 1 to 5 by default) log files will be generated to

140

include wrapper and console specific information.

When installing as a service on *NIX, do not use spaces in the path for
WARNING <DDF_HOME> as the service scripts that are generated by the wrapper cannot
handle spaces.

Ensure that JAVA_HOME is properly set before beginning this process. See Java

WARNING .
Requirements

1. Create the service wrapper.

DDF can create native scripts and executable files to run itself as an operating system service. This
is an optional feature that is not installed by default. To install the service wrapper feature, go the
DDF console and enter the command:

ddf@local> feature:install -r wrapper
2. Generate the script, configuration, and executable files:

*NIX

ddf@local> wrapper:install -i setenv-wrapper.conf -n ddf -d ddf -D "DDF Service"

Windows

ddf@local> wrapper:install -i setenv-windows-wrapper.conf -n ddf -d ddf -D "DDF
Service"

3. (Windows users skip this step) (All *NIX) If DDF was installed to run as a non-root user (as-
recommended,) edit <DDF_HOME>/bin/ddf-service and change the property #RUN_AS_USER= to:

<DDF_HOME?>/bin/ddf-service

RUN_AS USER=<ddf-user>

where <ddf-user> is the intended username:

4. (Windows users skip down) (All *NIX) Edit <DDF_HOME>/bin/ddf-service. Add LimitNOFILE to the
[Service] section.

<DDF_HOME>/bin/ddf.service

LimitNOFILE=6815744

5. (Windows users skip this step) (*NIX with systemd) Install the wrapper startup/shutdown scripts.

141

Install the service and start it when the system boots, use systemctl From an OS console, execute:
root@localhost# systemctl enable <DDF_HOME>/bin/ddf.service

6. (Windows users skip this step) (*NIX without systemd) Install the wrapper startup/shutdown scripts.

If the system does not use systemd, use the init.d system to install and configure the service.
Execute these commands as root or superuser:

root@localhost# 1n -s <DDF_HOME>/bin/ddf-service /etc/init.d/
root@localhost# chkconfig ddf-service --add
root@localhost# chkconfig ddf-service on

7. (Windows only, if the system’s JAVA_HOME variable has spaces in it) Edit <DDF_HOME>/etc/ddf-
wrapper.conf. Put quotes around wrapper.java.additional.n system properties for n from 1 to 13 like
so:

<DDF_HOME>/etc/ddf-wrapper.conf

wrapper.java.additional.1=-
Djava.endorsed.dirs="%JAVA_HOME%/jre/1ib/endorsed;%JAVA_HOME%/1ib/endorsed; %KARAF_HOME
%/1ib/endorsed"

wrapper.java.additional.2=-
Djava.ext.dirs="%JAVA_HOME%/jre/1lib/ext;%JAVA_HOME%/1ib/ext;%KARAF_HOME%/1ib/ext"
wrapper.java.additional.3=-Dkaraf.instances="%KARAF_HOME%/instances"
wrapper.java.additional.4=-Dkaraf.home="%KARAF_HOME%"
wrapper.java.additional.5=-Dkaraf.base="%KARAF_BASE%"
wrapper.java.additional.6=-Dkaraf.data="%KARAF_DATA%"
wrapper.java.additional.7=-Dkaraf.etc="%KARAF_ET(C%"
wrapper.java.additional.8=-Dkaraf.log="%KARAF_L0G%"
wrapper.java.additional.9=-Dkaraf.restart.jvm.supported=true
wrapper.java.additional.10=-Djava.io.tmpdir="%KARAF_DATA%/tmp"
wrapper.java.additional.11=-
Djava.util.logging.config.file="%KARAF_ETC%/java.util.logging.properties"
wrapper.java.additional.12=-Dcom.sun.management. jmxremote
wrapper.java.additional.13=-Dkaraf.startlLocalConsole=false
wrapper.java.additional.14=-Dkaraf.startRemoteShell=true

8. (Windows only) Install the wrapper startup/shutdown scripts.

Run the following command in a console window. The command must be run with elevated
permissions.

<DDF_HOME>\bin\ddf-service.bat install

142

Startup and shutdown settings can then be managed through Services -~ MMC Start — Control
Panel - Administrative Tools — Services.

8.1.1.2. Karaf Documentation

Because DDF is built on top of Apache Karaf, more information on operating DDF can be found in the
Karaf documentation .

8.2. Managed Services

The lifecycle of DDF and Solr processes can be managed by the operating system. The DDF
documentation provides instructions to install DDF as a managed services on supported unix
platforms. However, the documentation cannot account for all possible configurations. Please consult
the documentation for the operating system and its init manager if the instructions in this document
are inadequate.

» Configure Solr to run as a managed service

* Configure DDF to run as a managed service

8.2.1. Run Solr as Managed Service

These instructions are for configuring Solr as a service managed by the operating system.

8.2.1.1. Configure Solr as a Windows Service

Windows users can use the Task Scheduler to start Solr as a background process.

1. If DDF is running, stop it.

2. Edit <DDF_HOME>/etc/custom.system.properties and set start.solr=false. This prevents the DDF
scripts from attempting to manage Solr’s lifecycle.

Start the Windows Task Scheduler and open the Task Scheduler Library.
Under the Actions pane, select Create Basic Task....

Provide a useful name and description, then select Next.

Select When the computer starts as the Trigger and select Next.

Select Start a program as the Action and select Next.

© N e s W

Select the script to start Solr:

<DDF_HOME>\bin\ddfsolr.bat

9. Add the argument start in the window pane and select Next.

10. Review the settings and select Finish.

143

http://karaf.apache.org/index/documentation.html

It may be necessary to update the Security Options under the task Properties to Run with highest
privileges or setting user to "SYSTEM".

Additionally, the process can be set to restart if it fails. The option can be found in the the Properties >
Settings tab.

Depending on the system it may also make sense to delay the process from starting for a few minutes
until the machine has fully booted. Open the task’s Properties settings and

a. Select Triggers.

b. Select Edit.

c. Select Advanced Settings.

d. Select Delay Task.

8.2.1.2. Configure Solr as a Systemd Service

These instructions are for unix operating systems running the systemd init manager. If configuring a
Windows system, see Configure Solr as a Windows Service

1. If DDF is running, stop it.

2. Edit <DDF_HOME>/etc/custom.system.properties and set start.solr=false.

3. Edit the file <DDF_HOME>/solr/services/solr.service

a. Edit the property Environment=JAVA_HOME and replace <JAVA_HOME> with the absolute path to the
directory where the Java Runtime Environment is installed.

b. Edit the property ExecStart and replace <DDF_HOME> with the absolute path to the ddfsolr file.
c. Edit the property ExecStop and replace <DDF_HOME> with the absolute path to the ddfsolr file.
d. Edit the property User and replace <USER> with the user ID of the Solr process owner.
4. From the operating system command line, enable a Solr service using a provided configuration file.
Use the full path to the file.
systemctl enable <DDF_HOME>/solr/service/solr.service
5. Start the service.
systemctl start solr

6. Check the status of Solr

systemctl status solr

144

Solr will start automatically each time the system is booted.

Follow the below steps to start and stop DDF.

8.2.2. Starting from Startup Scripts
Run one of the start scripts from a command shell to start the distribution and open a local console:

Start Script: *NIX

<DDF_HOME>/bin/ddf

Start Script: Windows

<DDF_HOME>/bin/ddf.bat

8.2.3. Starting as a Background Process
Alternatively, to run DDF as a background process, run the start script:

*NIX

<DDF_HOME>/bin/start

Windows

<DDF_HOME>/bin/start.bat

If console access is needed while running as a service, run the client script on the host
where the DDF is running:

*NIX

<DDF_HOME>/bin/client
NOTE

Windows

<DDF_HOME>/bin/client.bat -h <FQDN>

Use the -h option followed by the name (<FQDN>) or IP of the host where DDF is running.

145

8.2.4. Stopping DDF
There are two options to stop a running instance:
* Call shutdown from the console:

Shut down with a prompt

ddf@local>shutdown

Force Shutdown without prompt

ddf@local>shutdown -f

* Keyboard shortcut for shutdown
o Ctrl-D
o Cmd-D

* Or run the stop script:

*NIX

<DDF_HOME>/bin/stop

Windows

<DDF_HOME>/bin/stop.bat

Shut Down

Do not shut down by closing the window (Windows, Unix) or using the kill -9

IMPORTANT <pid> command (Unix). This prevents a clean shutdown and can cause
significant problems when DDF is restarted. Always use the shutdown
command or the shortcut from the command line console.

8.3. Maintaining

8.3.1. Console Commands

Once the distribution has started, administrators will have access to a powerful command line console,
the Command Console. This Command Console can be used to manage services, install new features,
and manage the state of the system.

The Command Console is available to the user when the distribution is started manually or may also be

146

accessed by using the bin/client.bat or bin/client scripts.

The majority of functionality and information available on the Admin Console is also

NOTE
available on the Command Line Console.

8.3.1.1. Console Command Help

For details on any command, type help then the command. For example, help search (see results of this
command in the example below).

Example Help

ddf@local>help search
DESCRIPTION
catalog:search
Searches records in the catalog provider.
SYNTAX
catalog:search [options] SEARCH_PHRASE [NUMBER_OF_ITEMS]
ARGUMENTS
SEARCH_PHRASE
Phrase to query the catalog provider.
NUMBER_OF _ITEMS
Number of maximum records to display.
(defaults to -1)
OPTIONS
--help
Display this help message
case-sensitive, -c
Makes the search case sensitive
-p, -provider
Interacts with the provider directly instead of the framework.

The help command provides a description of the provided command, along with the syntax in how to
use it, arguments it accepts, and available options.

8.3.1.2. CQL Syntax

The CQL syntax used with console commands should follow the OGC CQL format. GeoServer provides a
description of the grammar and examples in this CQL Tutorial .

147

http://docs.geoserver.org/stable/en/user/tutorials/cql/cql_tutorial.html

CQL Syntax Examples

Finding all notifications that were sent due to a download:
ddf@local>store:1list --cql "application='Downloads'" --type notification

Deleting a specific notification:
ddf@local>store:delete --cql "id='fdc150b157754138a997fe7143a98cfa'" --type notification

8.3.1.3. Available Console Commands

Many console commands are available, including DDF commands and the core Karaf console
commands. For more information about these core Karaf commands and using the console, see the
Commands documentation for Karaf 4.2.2 at Karaf documentation .

For a complete list of all available commands, from the Command Console, press TAB and confirm
when prompted.

Console commands follow a format of namespace : command.
To get a list of commands, type in the namespace of the desired extension then press TAB.
For example, type catalog, then press TAB.

Table 26. DDF Console Command Namespaces

Namespace Description

catalog The Catalog Shell Commands are meant to be used with any CatalogProvider
implementations. They provide general useful queries and functions against the
Catalog API that can be used for debugging, printing, or scripting.

migrate The Migrate Shell Commands provide functions to perform data migrations.
platform The DDF Platform Shell Commands provide generic platform management functions
store The Persistence Shell Commands are meant to be used with any PersistentStore

implementations. They provide the ability to query and delete entries from the
persistence store.

subscription The DDF PubSub shell commands provide functions to list the registered
subscriptions in DDF and to delete subscriptions.

solr The Solr commands are used for the Solr CatalogProvider implementation. They
provide commands specific to that provider.

8.3.1.3.1. Catalog Commands

Most commands can bypass the Catalog framework and interact directly with the
Catalog provider if given the --provider option, if available. No pre/post plugins
are executed and no message validation is performed if the --provider option is
used.

WARNING

148

https://karaf.apache.org/documentation.html

Table 27. Catalog Command Descriptions

Comma
nd

catalog:
describe

catalog:
dump

catalog:
envlist

catalog:
export

catalog:
import

catalog:
ingest

catalog:
inspect

catalog:
latest

catalog:
migrate

catalog:
range

catalog:
remove

catalog:
removeal
1

catalog:
replicat
e

catalog:
search

catalog:
spatial

Description

Provides a basic description of the Catalog implementation.

Exports metacards from the local Catalog. Does not remove them. See date filtering options
below.

IMPORTANT Deprecated as of ddf-catalog 2.5.0. Please use platform:envlist.

Provides a list of environment variables.

Exports Metacards and history from the current Catalog.

Imports Metacards and history into the current Catalog.

Ingests data files into the Catalog. XML is the default transformer used. See Ingest
Command for detailed instructions on ingesting data and Input Transformers for all
available transformers.

Provides the various fields of a metacard for inspection.

Retrieves the latest records from the Catalog based on the Core. METACARD_MODIFIED
date.

Allows two CatalogProvider s to be configured and migrates the data from the primary to
the secondary.

Searches by the given range arguments (exclusively).

Deletes a record from the local Catalog.

Attempts to delete all records from the local Catalog.

Replicates data from a federated source into the local Catalog.

Searches records in the local Catalog.

Searches spatially the local Catalog.

149

Comma Description
nd

i atalgg: Provides information on available transformers.
ransfor

mers

ca’{g(ljo%: Validates an XML file against all installed validators and prints out human readable errors
VORAate and warnings.

catalog:dump Options

The catalog:dump command provides selective export of metacards based on date ranges. The --created
-after and --created-before options allow filtering on the date and time that the metacard was
created, while --modified-after and --modified-before options allow filtering on the date and time that
the metacard was last modified (which is the created date if no other modifications were made). These
date ranges are exclusive (i.e., if the date and time match exactly, the metacard will not be included).
The date filtering options (--created-after, --created-before, --modified-after, and --modified-before)
can be used in any combination, with the export result including only metacards that match all of the
provided conditions.

If no date filtering options are provided, created and modified dates are ignored, so that all metacards
match.

Date Syntax

Supported dates are taken from the common subset of ISO8601, matching the datetime from the
following syntax:

datetime = time | date-opt-time

time = 'T' time-element [offset]

date-opt-time date-element ['T' [time-element] [offset]]

date-element std-date-element | ord-date-element | week-date-element
std-date-element yyyy ['-'" MM ['-" dd]]

ord-date-element yyyy ['-' DDD]

week-date-element = xxxx '-W' ww ['-" e]

time-element HH [minute-element] | [fraction]

minute-element ":'" mm [second-element] | [fraction]

second-element ss [fraction]

fraction = ("] ",") digit+

offset ="7" [(C'+"] "-")HH [t mm [Tt oss [(CULT], ") SSSTT]

150

catalog:dump Examples

ddf@local>// Given we've ingested a few metacards
ddf@local>catalog: latest

ID Modified Date Title
1 abe9ae09c792438e92a3c9d7452a449f 2019-08-13

2 b4daced451033400da42f3b319e58c3ed 2019-08-13

3 a63ab223671e14cee9970f5284e8ebded 2019-08-13 myTitle

ddf@local>// Filter out older files
ddf@local>catalog:dump --created-after 2019-08-13 /home/user/ddf-catalog-dump
1 file(s) dumped in 0.015 seconds

ddf@local>// Filter out new file
ddf@local>catalog:dump --created-before 2019-08-13 /home/user/ddf-catalog-dump
2 file(s) dumped in 0.023 seconds

ddf@local>// Choose middle file
ddf@local>catalog:dump --created-after 2019-08-13 /home/user/ddf-catalog-dump
1 file(s) dumped in 0.020 seconds

ddf@local>// Modified dates work the same way
ddf@local>catalog:dump --modified-after 2019-08-13 /home/user/ddf-catalog-dump
1 file(s) dumped in 0.015 seconds

ddf@local>// Can mix and match, most restrictive limits apply
ddf@local>catalog:dump --modified-after 2019-08-13 /home/user/ddf-catalog-dump
1 file(s) dumped in 0.024 seconds

ddf@local>// Can use UTC instead of (or in combination with) explicit time zone offset
ddf@local>catalog:dump --modified-after 2019-08-13 /home/user/ddf-catalog-dump

2 file(s) dumped in 0.020 seconds
ddf@local>catalog:dump --modified-after 2019-08-13 /home/user/ddf-catalog-dump

1 file(s) dumped in 0.015 seconds

ddf@local>// Can leave off time zone, but default (local time on server) may not match
what you expect!
ddf@local>catalog:dump --modified-after 2019-08-13 /home/user/ddf-catalog-dump

1 file(s) dumped in 0.018 seconds

ddf@local>// Can leave off trailing minutes / seconds
ddf@local>catalog:dump --modified-after 2019-08-13 /home/user/ddf-catalog-dump
2 file(s) dumped in 0.024 seconds

ddf@local>// Can use year and day number

ddf@local>catalog:dump --modified-after 2019-08-13 /home/user/ddf-catalog-dump
2 file(s) dumped in 0.027 seconds

151

8.3.1.3.2. Solr Commands

Table 28. Solr Command Descriptions

Comma Description
nd

Eolr:bac Creates a backup of the selected Solr core/collection. This uses the Solr interface for
uP creating the backup. In Solr Cloud deployments the selected backup directory must exist
and be shared on all Solr nodes.

i‘ﬂr T€S Restores a Solr backup to the selected core/collection. This uses the Solr interfaces for
ore restoring the backup. In Solr Cloud deployments the directory containing the files to restore
must exist and be shared on all Solr nodes.

8.3.1.3.3. Subscriptions Commands

NOTE The subscriptions commands are installed when the Catalog application is installed.

Table 29. Subscription Command Descriptions

Command Description

iUbSC”' ptions:dele Deletes the subscription(s) specified by the search phrase or LDAP filter.
e

subscriptions:list List the subscription(s) specified by the search phrase or LDAP filter.

subscriptions:list Command Usage Examples

Note that no arguments are required for the subscriptions:list command. If no argument is provided,
all subscriptions will be listed. A count of the subscriptions found matching the list command’s search
phrase (or LDAP filter) is displayed first followed by each subscription’s ID.

List All Subscriptions
ddf@local>subscriptions:list
Total subscriptions found: 3
Subscription ID
my.contextual.id.v20|http://172.18.14.169:8088/mockCatalogEventConsumerBinding?WSDL

my.contextual.id.v30|http://172.18.14.169:8088/mockEventConsumerBinding?WSDL
my.contextual.id.json|http://172.18.14.169:8088/services/json/local/event/notification

152

List a Specific Subscription by ID

ddf@local>subscriptions:list
"my.contextual.id.v20|http://172.18.14.169:8088/mockCatalogEventConsumerBinding?WSDL"

Total subscriptions found: 1

Subscription ID
my.contextual.id.v20|http://172.18.14.169:8088/mockCatalogEventConsumerBinding?WSDL

It is recommended to always quote the search phrase (or LDAP filter) argument to

WARNING
the command so that any special characters are properly processed.

List Subscriptions Using Wildcards
ddf@local>subscriptions:list "my*"
Total subscriptions found: 3
Subscription ID
my.contextual.id.v20|http://172.18.14.169:8088/mockCatalogEventConsumerBinding?WSDL
my.contextual.id.v30|http://172.18.14.169:8088/mockEventConsumerBinding?WSDL
my.contextual.id.json|http://172.18.14.169:8088/services/json/local/event/notification
ddf@local>subscriptions:list "*json*"
Total subscriptions found: 1
Subscription ID
my.contextual.id.json|http://172.18.14.169:8088/services/json/local/event/notification
ddf@local>subscriptions:list "*WSDL"
Total subscriptions found: 2
Subscription ID

my.contextual.id.v20|http://172.18.14.169:8088/mockCatalogEventConsumerBinding?WSDL
my.contextual.id.v30|http://172.18.14.169:8088/mockEventConsumerBinding?WSDL

The example below illustrates searching for any subscription that has "json" or "v20" anywhere in its
subscription ID.

153

List Subscriptions Using an LDAP Filter
ddf@local>subscriptions:1list -f "(|(subscription-id=*json*) (subscription-id=*v20*))"
Total subscriptions found: 2

Subscription ID
my.contextual.id.v20|http://172.18.14.169:8088/mockCatalogEventConsumerBinding?WSDL
my.contextual.id.json|http://172.18.14.169:8088/services/json/local/event/notification

The example below illustrates searching for any subscription that has json and 172.18.14.169 in its
subscription ID. This could be a handy way of finding all subscriptions for a specific site.

ddf@local>subscriptions:list -f "(&(subscription-id=*json*) (subscription-
1d=*172.18.14.169*))"

Total subscriptions found: 1

Subscription ID
my.contextual.id.json|http://172.18.14.169:8088/services/json/local/event/notification

subscriptions:delete Command Usage

The arguments for the subscriptions:delete command are the same as for the 1ist command, except
that a search phrase or LDAP filter must be specified. If one of these is not specified an error will be
displayed. When the delete command is executed it will display each subscription ID it is deleting. If a
subscription matches the search phrase but cannot be deleted, a message in red will be displayed with
the ID. After all matching subscriptions are processed, a summary line is displayed indicating how
many subscriptions were deleted out of how many matching subscriptions were found.

Delete a Specific Subscription Using Its Exact ID

ddf@local>subscriptions:delete
"my.contextual.id.json|http://172.18.14.169:8088/services/json/local/event/notification"

Deleted subscription for ID =
my.contextual.id.json|http://172.18.14.169:8088/services/json/local/event/notification

Deleted 1 subscriptions out of 1 subscriptions found.

154

Delete Subscriptions Using Wildcards
ddf@local>subscriptions:delete "my*"
Deleted subscription for ID =
my.contextual.id.v20|http://172.18.14.169:8088/mockCatalogEventConsumerBinding?WSDL
Deleted subscription for ID =
my.contextual.id.v30|http://172.18.14.169:8088/mockEventConsumerBinding?WSDL
Deleted 2 subscriptions out of 2 subscriptions found.

ddf@local>subscriptions:delete "*json*"

Deleted subscription for ID =
my.contextual.id.json|http://172.18.14.169:8088/services/json/local/event/notification

Deleted 1 subscriptions out of 1 subscriptions found.

Delete All Subscriptions
ddf@local>subscriptions:delete *

Deleted subscription for ID =
my.contextual.id.v30|http://172.18.14.169:8088/mockEventConsumerBinding?WSDL

Deleted subscription for ID =
my.contextual.id.v20|http://172.18.14.169:8088/mockCatalogEventConsumerBinding?WSDL
Deleted subscription for ID =
my.contextual.id.json|http://172.18.14.169:8088/services/json/local/event/notification

Deleted 3 subscriptions out of 3 subscriptions found.

Delete Subscriptions Using an LDAP Filter

ddf@local>subscriptions:delete -f "(&(subscription-id=*WSDL) (subscription-
1d=*172.18.14.169*%))"

Deleted subscription for ID =
my.contextual.id.v20|http://172.18.14.169:8088/mockCatalogEventConsumerBinding?WSDL
Deleted subscription for ID =
my.contextual.id.v30|http://172.18.14.169:8088/mockEventConsumerBinding?WSDL

Deleted 2 subscriptions out of 2 subscriptions found.

8.3.1.3.4. Platform Commands

Table 30. Platform Command Descriptions

155

Comma Description

nd

platform Shows the current platform configuration.
:describ

e

platform Pprovides a list of environment variables.
tenvlist

8.3.1.3.5. Migrate Commands

Migrate Command Descriptions

Performing a data migration creates, updates, or deletes existing metacards within the

NOTE system. A data migration needs to be run when the structure of the data changes to
ensure that existing resources function as expected. The effects of this command
cannot be reverted or undone. It is highly recommended to back up the catalog before
performing a data migration.

The syntax for the migration command is

o migrate:data --list
« migrate:data --all

« migrate:data <serviceld>

Select the <serviceld> based on which data migration task you wish to run. To see a list of all data
migrations tasks that are currently available, run the migrate:data --1ist command.

The --all option runs every data migration task that is available.

The --1ist option lists all available data migration tasks.

If an error occurrs performing a data migration the specifics of that error are available

NOTE
in the logs or are printed to the karaf console.

8.3.1.3.6. Persistence Store Commands

Table 31. Persistence Store Command Descriptions

Command Description
store:delete Delete entries from the persistence store that match a given CQL statement
store:Tlist Lists entries that are stored in the persistence store.

8.3.1.4. Command Scheduler

The Command Scheduler allows administrators to schedule Command Line Commands to be run at
specified intervals.

156

The Command Scheduler allows administrators to schedule Command Line Shell Commands to be run
in a platform-independent way. For instance, if an administrator wanted to use the Catalog commands
to export all records of a Catalog to a directory, the administrator could write a cron job or a scheduled
task to remote into the container and execute the command. Writing these types of scripts are specific
to the administrator’s operating system and also requires extra logic for error handling if the container
is up. The administrator can also create a Command Schedule, which currently requires only two
fields. The Command Scheduler only runs when the container is running, so there is no need to verify
if the container is up. In addition, when the container is restarted, the commands are rescheduled and
executed again. A command will be repeatedly executed indefinitely according to the configured
interval until the container is shutdown or the Scheduled Command is deleted.

There will be further attempts to execute the command according to the configured

NOTE
interval even if an attempt fails. See the log for details about failures.

8.3.1.4.1. Schedule a Command

Configure the Command Scheduler to execute a command at specific intervals.
Navigate to the Admin Console (https:/{FQDN}:{PORT}/admin).

Select the Platform application.

Click on the Configuration tab.

Select Platform Command Scheduler.

SR

Enter the command or commands to be executed in the Command text field. Commands can be
separated by a semicolon and will execute in order from left to right.

6. Enter an interval in the Interval field. This can either be a Quartz Cron expression or a positive
integer (seconds) (e.x.9 0 0 1/1 * ? *or 12).

7. Select the interval type in the Interval Type drop-down.

8. Click the Save changes button.

Scheduling commands will be delayed by 1 minute to allow time for bundles to load

NOTE . .
when DDF is starting up.

8.3.1.4.2. Updating a Scheduled Command
Change the timing, order, or execution of scheduled commands.
Navigate to the Admin Console.

Click on the Platform application.

Click on the Configuration tab.

= WMo

Under the Platform Command Scheduler configuration are all of the scheduled commands.
Scheduled commands have the following syntax: ddf.platform.scheduler.Command.{GUID} such as
ddf.platform.scheduler.Command.4d60c917-0033-42e8-9367-1dadf822cabe.

157

5. Find the desired configuration to modify, and update fields.

6. Click the Save changes button.

8.3.1.4.3. Output of Scheduled Commands

Commands that normally write out to the console will write out to the log. For example, if an echo

"Hello World" command is set to run every five seconds, the log contains the following:

Sample Command Output in the Log
16:01:32,582 | INFO | heduler_Worker-1 | ddf.platform.scheduler.CommandJ]ob

platform-scheduler | Executing command [echo Hello World]

16:01:32,583 | INFO | heduler_Worker-1 | ddf.platform.scheduler.CommandJob

platform-scheduler | Execution Output: Hello World

16:01:37,581 | INFO | heduler_Worker-4 | ddf.platform.scheduler.CommandJob

platform-scheduler | Executing command [echo Hello World]

16:01:37,582 | INFO | heduler_Worker-4 | ddf.platform.scheduler.CommandJob

platform-scheduler | Execution Output: Hello World

68 |
70 |
68 |

70 |

In short, administrators can view the status of a run within the log as long as INFO was set as the status

level.

8.4. Monitoring

The DDF contains many tools to monitor system functionality, usage, and overall system health.

8.4.1. Metrics Reporting
Metrics are available in several formats and levels of detail.
Complete the following procedure now that several queries have been executed.

1. Select Platform

2. Select Metrics tab

3. For individual metrics, choose the format desired from the desired timeframe column:

a. PNG
b. CSV
c. XLS

4. For a detailed report of all metrics, at the bottom of the page are selectors to choose time frame and

summary level. A report is generated in xIs format.

158

8.4.2. Managing Logging

The DDF supports a dynamic and customizable logging system including log level, log format, log
output destinations, roll over, etc.

8.4.2.1. Configuring Logging

Edit the configuration file <DDF_HOME>/etc/org.ops4j.pax.logging.cfg]

8.4.2.2. DDF log file
The name and location of the log file can be changed with the following setting:

log4j.appender.out.file=<DDF_HOME>/data/log/ddf.1log

8.4.2.3. Controlling log level
A useful way to debug and detect issues is to change the log level:

log4j.rootLogger=DEBUG, out, osgi:VmLogAppender

8.4.2.4. Controlling the size of the log file
Set the maximum size of the log file before it is rolled over by editing the value of this setting:

log4j.appender.out.maxFileSize=20MB

8.4.2.5. Number of backup log files to keep
Adjust the number of backup files to keep by editing the value of this setting:

log4j.appender.out.maxBackupIndex=10

8.4.2.6. Enabling logging of inbound and outbound SOAP messages for the DDF SOAP endpoints

By default, the DDF start scripts include a system property enabling logging of inbound and outbound
SOAP messages.

-Dcom.sun.xml.ws.transport.http.HttpAdapter.dump=true

In order to see the messages in the log, one must set the logging level for org.apache.cxf.services to
INFO. By default, the logging level for org.apache.cxf is set to WARN.

ddf@local>log:set INFO org.apache.cxf.services

8.4.2.7. Logging External Resources

Other appenders can be selected and configured.

For more detail on configuring the log file and what is logged to the console see: Karaf Documentation:

159

http://karaf.apache.org/manual/latest/#_log

Log .

8.4.2.8. Enabling HTTP Access Logging

To enable access logs for the current DDF, do the following:

» Update the jetty.xml file located in etc/ adding the following xml:

<Get name="handler">
<Call name="addHandler">
<Arg>
<New class="org.eclipse.jetty.server.handler.RequestLogHandler">
<Set name="requestlLog">
<New id="RequestlLogImpl" class="org.eclipse.jetty.server.NCSARequestLog">
<Arg><SystemProperty name="jetty.logs" default="data/log/"
/>/yyyy_mm_dd.request.log</Arg>
<Set name="retainDays">90</Set>
<Set name="append">true</Set>
<Set name="extended">false</Set>
<Set name="LogTimeZone">GMT</Set>
</New>
</Set>
</New>
</Arg>
</Call>
</Get>

Change the location of the logs to the desired location. In the settings above, location will default to
data/log (same place where the log is located).

The log is using National Center for Supercomputing Association Applications (NCSA) or Common
format (hence the class 'NCSARequestLog"). This is the most popular format for access logs and can be
parsed by many web server analytics tools. Here is a sample output:

127.0.0.1 - - [14/Jan/2013:16:21:24 +0000] "GET /favicon.ico HTTP/1.1" 200 0

127.0.0.1 - - [14/3Jan/2013:16:21:33 +0000] "GET /services/ HTTP/1.1" 200 @

127.0.0.1 - - [14/Jan/2013:16:21:33 +0000] "GET /services//?stylesheet=1 HTTP/1.1" 200
0

127.0.0.1 [14/3an/2013:16:21:33 +0000] "GET /favicon.ico HTTP/1.1" 200 0

8.4.2.9. Using the LogViewer

* Navigate to the Admin Console

* Navigate to the System tab

160

http://karaf.apache.org/manual/latest/#_log

» Select Logs

The LogViewer displays the most recent 500 log messages by default, but will grow to a maximum of
5000 messages. To view incoming logs, select the PAUSED button to toggle it to LIVE mode. Switching
this back to PAUSED will prevent any new logs from being displayed in the LogViewer. Note that this
only affects the logs displayed by the LogViewer and does not affect the underlying log.

Log events can be filtered by:

* Log level (ERROR, WARNING, etc).
- The LogViewer will display at the currently configured log level for the Karaf logs.
= See Controlling Log Level to change log level.
* Log message text.

* Bundle generating the message.

It is not recommended to use the LogViewer if the system logger is set to a low
reporting level such as TRACE. The volume of messages logged will exceed the
WARNING polling rate, and incoming logs may be missed.

The actual logs being polled by the LogViewer can still be accessed at
<DDF_HOME>/data/log

The LogViewer settings don’t change any of the underlying logging settings, only which
NOTE messages are displayed. It does not affect the logs generated or events captured by the
system logger.

8.5. Troubleshooting

If, after configuration, a DDF is not performing as expected, consult this table of common fixes and
workarounds.

Table 32. General Troubleshooting

Issue Solution

Unable to unzip distribution The default Windows zip utility is not compatible with the DDF
on Windows platform distribution zip file. Use Java or a third-party zip utility.

Unable to federate on Windows default firewall is not compatible with DDF.
Windows Platform

161

Issue

Ingesting more than 200,000
data files stored NFS shares
may cause Java Heap Space
error (Linux-only issue).

Ingesting serialized data file

with scientific notation in

WKT string causes
RuntimeException.

Exception Starting DDF
(Windows)

An exception is sometimes
thrown starting DDF on a
Windows machine (x86).

If using an unsupported

terminal,
java.lang.NoClassDefFoundErr
or: Could not initialize
class
org.fusesource.jansi.interna

1.Kernel32 is thrown.

CXF BusException

The following exception is

thrown:
org.apache.cxf.BusException:
No conduit initiator

162

Solution

This is an NFS bug where it creates duplicate entries for some files
when doing a file list. Depending on the OS, some Linux machines can
handle the bug better and able get a list of files but get an incorrect
number of files. Others would have a Java Heap Space error because
there are too many file to list.

As a workaround, ingest files in batches smaller than 200,000.

WKT string with scientific notation such as POINT (-34.8932113039107
-4.77974239601E-5) won’t ingest. This occurs with serialized data
format only.

Install missing Windows libraries.

Some Windows platforms are missing libraries that are required by
DDF. These libraries are provided by the Microsoft Visual C++ 2008
Redistributable Package x64 .

Restart DDF. . Shut down DDF:
ddf@local>shutdown . Start up DDF: ./ddf

http://www.microsoft.com/en-us/download/details.aspx?id=15336
http://www.microsoft.com/en-us/download/details.aspx?id=15336

Issue Solution

Distribution Will Not Start Complete the following procedure.

DDF will not start when 1. Verify that Java is correctly installed.
calling the start script

defined during installation. Java -version

2. This should return something similar to:

java version "1.8.0_45" Java™ SE Runtime Environment (build
1.8.0_45-b14) Java HotSpot™ Server VM (build 25.45-b02, mixed
mode)

3. If running *nix, verify that bash is installed.
echo $SHELL
4. This should return:

/bin/bash

Multiple java.exe processes Perform one or all of the following recommended solutions, as
running, indicating more necessary.

than one DDF instance is
running. * Wait for proper shutdown of DDF prior to starting a new instance.
* Verify running java.exe are not DDF (e.g., kill/close if necessary).
This can be caused when
another DDF is not properly

shut down.

 Utilize automated start/stop scripts to run DDF as a service.

8.5.1. Deleted Records Are Being Displayed In The Search UI’s Search Results

When queries are issued by the Search UI, the query results that are returned are also cached in an
internal Solr database for faster retrieval when the same query may be issued in the future. As records
are deleted from the catalog provider, this Solr cache is kept in sync by also deleting the same records
from the cache if they exist.

Sometimes the cache may get out of sync with the catalog provider such that records that should have
been deleted are not. When this occurs, users of the Search UI may see stale results since these records
that should have been deleted are being returned from the cache. Records in the cache can be
manually deleted using the URL commands listed below from a browser. In these command URLs,
metacard_cache is the name of the Solr query cache.

* To delete all of the records in the Solr cache:

163

Deletion of all records in Solr query cache

https://{FQDN}:{PORT}/solr/metacard_cache/update?stream.body=<delete><query>*:*</query></
delete>&commit=true

» To delete a specific record in the Solr cache by ID (specified by the original_id_txt field):

Deletion of record in Solr query cache by ID

https://{FQDN}:{PORT}/solr/metacard_cache/update?stream.body=<delete><query>original_id_t
xt:50ffd32b21254c8a90c15fccfb98f139</query></delete>&commit=true

* To delete record(s) in the Solr cache using a query on a field in the record(s) - in this example, the
title_txt field is being used with wildcards to search for any records with word remote in the title:

Deletion of records in Solr query cache using search criteria

https://{FQDN}:{PORT}/solr/metacard_cache/update?stream.body=<delete><query>title_txt:*re
mote*</query></delete>&commit=true

9. Data Management

9.1. Ingesting Data

Ingesting is the process of getting metacard(s) into the Catalog Framework. Ingested files are
"transformed" into a neutral format that can be searched against as well as migrated to other formats
and systems. There are multiple methods available for ingesting files into the DDF.

Guest Claims Attributes and Ingest

NOTE Ensure that appropriate Guest Claims are configured to allow guest users to ingest data
and query the catalog.

9.1.1. Ingest Command

The Command Console has a command-line option for ingesting data.

Ingesting with the console ingest command creates a metacard in the catalog, but does
not copy the resource to the content store. The Ingest Command requires read access to
the directory being ingested. See the URL Resource Reader for configuring read
permission entries to the directory.

NOTE

The syntax for the ingest command is

164

ingest -t <transformer type> <file path>

Select the <transformer type> based on the type of file(s) ingested. Metadata will be extracted if it exists
in a format compatible with the transformer. The default transformer is the XML input transformer,
which supports the metadata schema catalog:metacard. To see a list of all transformers currently
installed, and the file types supported by each, run the catalog:transformers command.

For more information on the schemas and file types(mime-types) supported by each transformer see
the Input Transformers.

The <file path> is relative to the <DDF_HOME> directory. This can be the path to a file or a directory
containing the desired files.

Windows Users
NOTE)]))
On Windows, put the file path in quotes: "path/to/file".

Successful command line ingest operations are accompanied with messaging indicating how many
files were ingested and how long the operations took. The ingest command also prints which files
could not be ingested with additional details recorded in the ingest log. The default location of the log
is <DDF_HOME>/data/log/ingest_error.1log.

9.1.2. User Interface Ingest

Files can also be ingested directly from Intrigue.

The Intrigue uploader is intended for the upload of products (such as images or
WARNING documents), not metadata files (such as Metacard XML). A user will not be able to
specify which input transformer is used to ingest the document.

See Ingesting from Intrigue for details.

9.1.3. Content Directory Monitor Ingest

The Catalog application contains a Content Directory Monitor feature that allows files placed in a
single directory to be monitored and ingested automatically. For more information about configuring a
directory to be monitored, see Configuring the Content Directory Monitor.

Files placed in the monitored directory will be ingested automatically. If a file cannot be ingested, they
will be moved to an automatically-created directory named .errors. More information about the ingest
operations can be found in the ingest log. The default location of the log is
<DDF_HOME>/data/log/ingest_error.log. Optionally, ingested files can be automatically moved to a
directory called .ingested.

9.1.4. External Methods of Ingesting Data

Third-party tools, such as cURL.exe & and the Chrome Advanced Rest Client &, can be used to send

165

https://curl.haxx.se/
https://advancedrestclient.com/

files to DDF for ingest.

Windows Example

curl -H "Content-type: application/json;id=geojson" -i -X POST -d
@"C:\path\to\geojson_valid.json" https://{FQDN}:{PORT}/services/catalog

*NIX Example

curl -H "Content-type: application/json;id=geojson" -i -X POST -d @geojson_valid.json
https://{FQDN}:{PORT}/services/catalog

Where:

-H adds an HTTP header. In this case, Content-type header application/json;id=geojson is added to
match the data being sent in the request.

-1 requests that HTTP headers are displayed in the response.

-X specifies the type of HTTP operation. For this example, it is necessary to POST (ingest) data to the
server.

-d specifies the data sent in the POST request. The @ character is necessary to specify that the data is a
file.

The last parameter is the URL of the server that will receive the data.

This should return a response similar to the following (the actual catalog ID in the id and Location URL
fields will be different):

Sample Response

HTTP/1.1 201 Created

Content-Length: @

Date: Mon, 22 Apr 2015 22:02:22 GMT

id: 44dc84da101c4f9d9f751e38d9c4d97b

Location: https://{FQDN}:{PORT}/services/catalog/44dc84da101c4f9d9f751e38d9c4d97b
Server: Jetty(7.5.4.v20111024)

1. Use a web browser to verify a file was successfully ingested. Enter the URL returned in the
response’s HTTP header in a web browser. For instance in our example, it was
/services/catalog/44dc84da101c4f9d9f751e38d9c4d97b. The browser will display the catalog entry as
XML in the browser.

2. Verify the catalog entry exists by executing a query via the OpenSearch endpoint.

3. Enter the following URL in a browser /services/catalog/query?q=ddf. A single result, in Atom
format, should be returned.

A resource can also be ingested with metacard metadata associated with it using the multipart/mixed

166

content type.

Example

curl -k -X POST -i -H "Content-Type: multipart/mixed" -F
parse.resource=@/path/to/resource -F parse.metadata=@/path/to/metacard
https://{FQDN}:{PORT}/services/catalog

More information about the ingest operations can be found in the ingest log. The default location of the
log is <DDF_HOME>/data/log/ingest_error.loq.

9.1.5. Creating And Managing System Search Forms Through Karaf

System search provide a way to execute queries with pre-defined templates and search criteria. System
search forms are loaded via the system and are read-only. This command allows an administrator to
ingest, modify or remove system search forms within the system.

Loading Forms With Defaults

forms:load

Loading Forms With Overrides

forms:load --formsDirectory "/etc/forms" --forms "forms.json" --results "results.json"

Where:
-formsDirectory Specifies the directory in which the forms JSON and XML will reside

-results Specifies the file name of the results.json file
-forms Specifies the file name of the forms. json file
It’s important to note that forms:1load will fallback to the system default location for forms, results and

the forms directory. The defaults are as follows:

formsDirectory: "/etc/forms"
forms: "forms.json"
results: "results.json"

Example search forms and result form data can be found in <DDF_HOME>/etc/forms/readme.md.
Managing Forms
In addition to ingesting new system forms into the system, we provide the capability to manage the

forms, view the forms and remove them.

167

Viewing All Forms

forms:manage --list

Removing Single Form

forms:manage --remove-single "METACARD_ID"

Removing All Forms

forms:manage --remove-all

Where:
-list Displays the titles and IDs of all system forms in the system

-remove-single Takes in a metacard ID as an argument and removes it

-remove-all Removes all system forms from the system

9.1.6. Other Methods of Ingesting Data

The DDF provides endpoints for integration with other data systems and to further automate ingesting
data into the catalog. See Endpoints for more information.

9.2. Validating Data

Configure DDF to perform validation on ingested documents to verify the integrity of the metadata
brought into the catalog.

Isolate metacards with data validation issues and edit the metacard to correct validation errors.
Additional attributes can be added to metacards as needed.

9.2.1. Validator Plugins on Ingest

When Enforce Errors is enabled within the Admin Console, validator plugins ensure the data being
ingested is valid. Below is a list of the validators run against the data ingested.

168

Enforcing errors:
1. Navigate to the Admin Console.
2. Select the System tab.
3. Select the Configuration tab.
NOTE
4. Select Metacard Validation Marker Plugin.
a. If Enforce errors is checked, these validators below will be run on ingest.

b. If Enforce errors is not checked, these validators below will not be run on
ingest.

9.2.1.1. Validators run on ingest

TDF Schema Validation Service: This service validates a TDO against a TDF schema.

Size Validator: Validates the size of an attribute’s value(s).

Range Validator: Validates an attribute’s value(s) against an inclusive numeric range.
Enumeration Validator: Validates an attribute’s value(s) against a set of acceptable values.

Future Date Validator: Validates an attribute’s value(s) against the current date and time,
validating that they are in the future.

Past Date Validator: Validates an attribute’s value(s) against the current date and time, validating
that they are in the past.

ISO3 Country Code Validator: Validates an attribute’s value(s) against the ISO_3166-1 Alpha3
country codes.

Pattern Evaluator: Validates an attribute’s value(s) against a regular expression.
Required Attributes Metacard Validator: Validates that a metacard contains certain attributes.

Duplication Validator: Validates metacard against the local catalog for duplicates based on
configurable attributes.

Relationship Validator: Validates values that an attribute must have, can only have, and/or can’t
have.

Metacard WKT Validator: Validates a location metacard attribute (WKT string) against valid
geometric shapes.

9.2.2. Configuring Schematron Services

DDF uses Schematron Validation (4 to validate metadata ingested into the catalog.

Custom schematron rulesets can be used to validate metacard metadata. Multiple services can be
created, and each service can have multiple rulesets associated with it. Namespaces are used to
distinguish services. The root schematron files may be placed anywhere on the file system as long as
they are configured with an absolute path. Any root schematron files with a relative path are assumed

169

https://github.com/schematron

to be relative to <DDF_HOME>/schematron.

Schematron files may reference other schematron files using an include statement with a
relative path. However, when using the document function within a schematron ruleset
to reference another file, the path must be absolute or relative to the DDF installation
home directory.

TIP

Schematron validation services are configured with a namespace and one or more schematron
rulesets. Additionally, warnings may be suppressed so that only errors are reported.

To create a new service:

» Navigate to the Admin Console.

 Select the Catalog.

Select Configuration.

Ensure that catalog-schematron-plugin is started.

Select Schematron Validation Services.

9.2.3. Viewing Invalid Metacards

To view invalid metacards, query for them through Intrigue. Viewing will require DDF-administrator
privileges, if Catalog Federation Strategy is configured to filter invalid metacards.

. Navigate to Intrigue (https:/{FQDN}:{PORT}/search).

. Select Advanced Search.

1
2
3. Change the search property to metacard-tags.
4. Change the value of the property to invalid.

5

. Select Search.

9.2.4. Manually Editing Attributes

For small numbers of metacards, or for metacards ingested without overrides, attributes can be edited
directly.

Metacards retrieved from connected sources or from a fanout proxy will appear

WARNING
to be editable but are not truly local so changes will not be saved.

1. Navigate to Intrigue.
2. Search for the metacard(s) to be updated.
3. Select the metacards to be updated from the results list.

4. Select Summary or Details.

170

5. Select Actions from the Details view.
6. Select Add.
7. Select attribute from the list of available attributes.

8. Add any values desired for the attribute.
9.2.5. Injecting Attributes

To create a new attribute, it must be injected into the metacard before it is available to edit or override.

Injections are defined in a JSON-formatted file See Developing Attribute Injections for details on
creating an attribute injection file.

9.2.6. Overriding Attributes

Automatically change the value of an existing attribute on ingest by setting an attribute override.

Attribute overrides are available for the following ingest methods:

NOTE * Content Directory Monitor.

e Confluence source.

Navigate to the Admin Console.
Select the Catalog application.

Select Configuration.

= wo Mo

Select the configuration for the desired ingest method.
a. Catalog Content Directory Monitor.
b. Confluence Connected Source.
c. Confluence Federated Source.

5. Select Attribute Overrides.

6. Enter the key-value pair for the attribute to override and the value(s) to set.

9.3. Backing Up the Catalog

To backup local catalog records, a Catalog Backup Plugin is available. It is not installed by default for
performance reasons.

See Catalog Backup Plugin for installation and configuration instructions).

171

9.4. Removing Expired Records from the Catalog

DDF has many ways to remove expired records from the underlying Catalog data store. Nevertheless,
the benefits of data standardization is that an attempt can be made to remove records without the
need to know any vendor-specific information. Whether the data store is a search server, a No-SQL
database, or a relational database, expired records can be removed universally using the Catalog API
and the Catalog Commands.

9.5. Migrating Data

Data migration is the process of moving metacards from one catalog provider to another. It is also the
process of translating metadata from one format to another. Data migration is necessary when a user
decides to use metadata from one catalog provider in another catalog provider.

The process for changing catalog providers involves first exporting the metadata from the original
catalog provider and ingesting it into another.

From the Command Console, use these commands to export data from the existing catalog and then
import into the new one.

catalog:export
Exports Metacards and history from the current Catalog to an auto-generated file inside
<DDF_HOME>.
Use the catalog:export --help command to see all available options.

catalog:import <FILE_NAME>
Imports Metacards and history into the current Catalog.
Use the catalog:import --help command to see all available options.

9.6. Automatically Added Metacard Attributes

This section describes how attributes are automatically added to metacards.

9.6.1. Attributes Added on Ingest

A metacard is first created and populated by parsing the ingested resource with an Input Transformer.
Then Attributes Are Injected, Default Attribute Types are applied, and Attribute are Overridden.
Finally the metacard is passed through a series of Pre-Authorization Plugins and Pre-Ingest Plugins.

172

S

=) i

Input Transformers
Attribute Injection
Default Attribute Types
Attribute Overrides
Pre Authorization Plugins

Pre Ingest Plugins

Ingest Attribute Flow

9.6.1.1. Attributes Added by Input Transformers

Input Transformers create and populate metacards by parsing a resource. See File Format Specific
Attributes to see the attributes used for specific file formats.

DDF chooses which input transformer to use by:

1. Resolving the mimetype for the resource.

2. Gathering all of the input transformers associated with the resolved mimetype. See Supported File
Formats for a list of supported mimetypes.

3. Iterating through the transformers until a successful transformation is performed.

The first transformer that can successfully create a metacard from the ingested resource is chosen. If
no transformer can successfully transform the resource, the ingest process fails.

173

Each of the ingest methods have their own subtle differences when resolving
the resource’s mimetype/input transformer.

IMPORTANT For example: a resource ingested through Intrigue may not produce the same
metacard attributes as the same resource ingested through the Content
Directory Monitor.

9.6.1.2. Attributes Added by Attribute Injection

Attribute Injection is the act of adding attributes to a metacard’s Metacard Type. A Metacard Type
indicates the attributes available for a particular metacard, and is created at the same time as the
metacard.

Attribute values can only be set/modified if the attribute exists in the metacard’s

metacard type.
NOTE
Attributes are initially injected with blank values. However, if an attempt is made to

inject an attribute that already exists, the attribute will retain the original value.

See Catalog Taxonomy Definitions for a list of attributes injected by default.
See Developing Attribute Injections to learn how to configure attribute injections.

9.6.1.3. Attributes Added by Default Attribute Types

Developing Default Attribute Types is a configurable way to assign default values to a metacard’s
attributes.

Note that the attribute must be part of the metacard’s Metacard Type before it can be assigned a
default value.

See Attributes Added By Attribute Injection for more information about injecting attributes into the
metacard type.

9.6.1.4. Attributes Added by Attribute Overrides (Ingest)

Attribute Overriding is the act of replacing existing attribute values with a new value.
Attribute overrides can be configured for the Content Directory Monitor.

Note that the attribute must be part of the metacard’s Metacard Type before it can be overridden.
See Attributes Added By Attribute Injection for more information about injecting attributes into the
metacard type.

9.6.1.5. Attributes Added by Pre-Authorization Plugins

The Pre-Authorization Plugins provide an opportunity to take action before any security rules are
applied.

174

* The Metacard Ingest Network Plugin is a configurable plugin that allows the conditional insertion
of new attributes on metacards during ingest based on network information from the ingest
request. See Configuring the Metacard Ingest Network Plugin for configuration details.

9.6.1.6. Attributes Added by Pre-Ingest Plugins

The Pre-Ingest Plugins are responsible for setting attribute fields on metacards before they are stored
in the catalog.

» The Expiration Date Pre-Ingest Plugin adds or updates expiration dates which can be used later for
archiving old data.

* The Geocoder Plugin is responsible for populating the metacard’s Location.COUNTRY_CODE attribute if
the metacard has an associated location. If the metacard’s country code is already populated, the
plugin will not override it.

* The Identification Plugin assigns IDs to registry metacards and adds/updates IDs on create and
update.

* The Metacard Groomer plugin adds/updates IDs and timestamps to the created metacard.

9.6.2. Attributes Added on Query

Metacards resulting from a query will undergo Attribute Injection, then have their Attributes
Overridden.

9.6.2.1. Attributes Added by Attribute Overrides (Query)

Attribute Overriding is the act of replacing existing attribute values with a new value.
Attribute overrides can be configured for query results from the following Sources:

* Federated Source For Atlassian Confluence.
* CSW Specification Profile Federated Source.

¢ GMD CSW Federated Source.

Note that the attribute must be part of the metacard’s Metacard Type before it can be overridden.
See Attributes Added By Attribute Injection for more information about injecting attributes into the
metacard type.

Using
These user interfaces are available in DDF.

Using the Landing Page
Using the Landing Page.

175

Using Intrigue

Using Intrigue.

Using the Simple Search

Using the Simple Search user interface. None.

10. Using the Landing Page

The DDF Landing Page is the starting point for using DDF. It is accessible at https:/{FQDN}:{PORT}.

10.1. Search DDF Button

The search button navigates to the Search UI, enabling catalog queries.

10.2. Data Source Availability

The data source availabilty pane provides a quick glance at the status of configured data sources.

10.3. Announcements

The announcements pane contains messages from system adminstrators.

11. Using Intrigue

Introduction: Intrigue represents the most advanced search interface available with DDF. It provides
metadata search and discovery, resource retrieval, and workspace management with a 3D or optional
2D map visualization.

For more detail on any feature or button within Intrigue, click the ? icon in the upper
right of the screen; then, hover over any item on the screen and a contextual tooltip
will be displayed to define its purpose. To exit this mode, click the ? again or press
escape.

NOTE

11.1. Accessing Intrigue

The default URL for Intrigue is https:/{FQDN}:{PORT}/search/catalog

Catalog UI Guest Users

If Guest access has been enabled, users not signed in to DDF (i.e. guest users) will have
access to search functions, but all workspace configuration and settings will only exist
locally and will not be available for sharing.

NOTE

176

The default view for Intrigue is the Workspaces view. For other views or to return to the Workspaces
view, click the Navigation menu in the upper-left corner of Intrigue and select the desired view.

DDF Intrigue

& Workspaces

1. Upload

& Sources

Figure 1. Select the desired view from the Navigation menu.

11.2. Workspaces in Intrigue

Within Intrigue, workspaces are collections of settings, searches, and bookmarks that can be shared
between users and stored for repeated access.

11.2.1. Creating a Workspace in Intrigue
Before searching in DDF, at least one workspace must be created.

Start new workspace

1. From the Workspaces view, enter search terms into the Start new workspace search field and

177

click the magnifying glass (
search based on the entered search terms.

) icon. This will create a new workspace and perform a

Start a new workspace

Figure 2. Start new workspace

11.2.2. Configuring a Workspace in Intrigue
Configure each workspace with searches and share options.

Adding searches

1. From the default Workspaces view, select the workspace to add a search to.

2. Click Search DDF Intrigue in the upper left corner, enter search terms, and click Search to add a

search. This step can be repeated to add additional searches. Each workspace can have up to ten
searches.

a. Select Basic Search to select simple search criteria, such as text, time, and location.

b. Select Advanced Search to access a query builder for more complex queries.

3. \
Click the save () icon next to the workspace title in the upper left corner.
Navigation Menu Options
* Workspaces: View all available workspaces.
» Upload: Add new metadata and resources to the catalog.
» Sources: Lists all sources and their statuses.
* Open Workspaces: Lists open workspaces.

Workspace Menu Options

To view a workspace’s options from the Workspaces view, press the Options button (n) for the
workspace.

- Save: Save changes to the workspace.

> Run All Searches: Start all saved searches within this workspace.
o Cancel All Searches: Cancel all running searches.

- Open in New Tab: Opens this workspace in a separate tab.

o View Sharing: View and edit settings for sharing this workspace. Users must be signed in to
share workspaces or view shared workspaces.

178

o View Details: View the current details for a cloud-based workspace Users must be signed in to
view workspace details.

- Duplicate: Create a copy of this workspace.

- Subscribe/Unsubscribe: Selecting Subscribe will enable email notifications for search results
on this workspace. Selecting Unsubscribe will disable email notifications for search results on
this workspace.

o Move to Trash: Delete (archive) this workspace.

11.2.3. Sharing Workspaces
Workspaces can be shared between users at different levels of access as needed.

Share a Workspace

1.
From the Workspaces view, select the Options menu (“) for the workspace in which sharing

will be modified.
2. Select View Sharing.

a. To share by user role, set the drop-down menu to Read or Read and Write for each desired
role. All users with that role will be able to view the workspace, but will be limited based on the
permission assigned. No user will be granted the ability to share the workspace with additional
users.

b. To share with an individual user, add his/her email to the email list and set the drop-down
menu to Read, Read and Write, or Read, Write, and Share.

3. Click Apply.

Remove Sharing on a Workspace

1.
From the Workspaces view, select the Options menu (n) for the workspace in which sharing

will be modified.
2. Select View Sharing.

a. To remove the workspace from users with specific roles, set the drop-down menu to No Access
for those roles.

b. To remove individual users, remove the users' email addresses from the email list.

3. Click Apply.

11.3. Ingesting from Intrigue

Data can be ingested via Intrigue.

179

The Intrigue uploader is intended for the upload of products (such as images or
WARNING documents), not metadata files (such as Metacard XML). A user will not be able to
specify which input transformer is used to ingest the document.

1.
Select the Menu icon (E) in the upper left corner.
2. Select Upload.
3. Drag and drop file(s) or click to open a navigation window.
4. After selecting the file(s) to be uploaded, select Start to begin uploading.
Files are processed individually with a visual status indication of each upload. If there are any failures,

the user is notified with a message on that specific product. More information about the uploads can
be found in the ingest log. The default location of the log is <DDF_HOME>/data/1log/ingest_error.log.

Uploaded products may be marked with Validation Warnings or Errors. Additional

NOTE
configuration may be needed to view these products in searches.

11.3.1. Using the Upload Editor

Intrigue provides an upload editor form which allows users to customize the metadata of their
uploads. If enabled, it will appear alongside the upload dropzone and will displays a list of attributes a
that may be set.

To set an attribute, simply provide a value in the corresponding form control. All custom values in the
form will be applied on upload. If a field is left blank, the attribute will be ignored. To remove all
custom values entered, simply click the "Reset Attributes" button at the bottom of the form.

Certain attributes within the form may be marked as required (indicated by an asterisk). These fields
must be set before uploads will be permitted.

11.4. Searching with Intrigue

The Search pane has two tabs: Search and Lists.

180

= SAMPLE WORKSPACE Q Sea

Search Lists

You don't have any lists. | Search for
something and add it to a list or create
a new list .

Figure 3. Search Pane Tabs

11.4.1. Search Tab

View and edit searches from the Search tab.

The available searches for a workspace can be viewed by clicking on the drop-down on the Search tab.

181

My Workspace

Search Bookmarks

Search 1
1 results

10 minutes ago

> & & K

Search 1
1 results

10 minutes ago

> & & K

Search 2
0 results

5 minutes ago

> & B X

Figure 4. Viewing available searches.

Search Menu Options

At the bottom of each search is a list of options for the search.

* Run: Trigger this search to begin immediately.
 Edit: Edits the search criteria.

» Settings: Edits the search settings, such as sorting.

* Notifications: Allows setting up search notifications.
 Stop: Stop this search.

* Delete: Remove this search.

* Duplicate: Create a copy of this search as a starting point.

182

* Search Archived: Execute this search, but specifically for archived results.

» * Search Historical*: Execute this search, but specifically for historical results.

11.4.1.1. Editing a Search

An existing search can be updated by selecting the search in the Search tab of a workspace and by

. . . " .
clicking the Edit (Edl) icon.
Text: Perform a minimal textual search that is treated identically to a Basic search with only Text
specified.
Basic: Define a Text, Temporal, Spatial, or Type Search.

Text Search Details: Searches across all textual data of the targeted data source. Text search
capabilities include:

Search for an exact word, such as Text = apple : Returns items containing the word "apple" but
not "apples". Matching occurs on word boundaries.

Search for the existence of items containing multiple words, such as Text = apple orange : Returns
items containing both "apple" and "orange" words. Words can occur anywhere in an item’s
metadata.

Search using wildcards, such as Text = foo* : Returns items containing words like "food", "fool",
etc..

Wildcards should only be used for single word searches, not for phrases.

When searching with wildcards, do not include the punctuation at the
beginning or the end of a word. For example, search for Text = ca* instead of

WARNING Text = -ca* when searching for words like "cat", "-cat", etc.. and search for
Text = *oginstead of Text = *og. when searching for words like "dog", "dog.",
etc..

Text searches are by default case insensitive, but case sensitive searches are an option.
Temporal Search Details: Search based on absolute time of the created, modified, or effective date.
Any: Search without any time restrictions (default).
After: Search records after a specified time.
Before: Search records before a specified time.
Between: Set a beginning and end time to search between.
Relative: Search records relative to the current time.
Spatial Search Details

Search by latitude/longitude (decimal degrees or degrees minutes seconds), USNG/MGRS, or UTM
using a line, polygon, point-radius, or bounding box. Spatial criteria can also be defined by
entering a Keyword for a region, country, or city in the Location section of the query builder.

183

Type Search Details

Search for specific content types.

Advanced: Advanced query builder can be used to create more specific searches than can be done
through the other methods.

184

Advanced Query Builder Details

Operator: If 'AND' is used, all the filters in the branch have to be true for this branch to be true. If
'OR' is used, only one of the filters in this branch has to be true for this branch to be true.

Property: Property to compare against.

Comparison: How to compare the value for this property against the provided value. Depending
on the type of property selected, various comparison values will be available. See Types of
Comparators

Search Terms: The value for the property to use during comparison.
Sorting: Sort results by relevance, distance, created time, modified time or effective time.

Sources: Perform an enterprise search (the local Catalog and all federated sources) or search
specific sources.

Advanced Query Builder Comparators
Textual:
CONTAINS: Equivalent to Basic Text Search with Matchcase set to No.
MATCHCASE: Equivalent to Basic Text Search with Matchcase set to Yes.
=: Matches if an attribute is precisely equal to that search term.

NEAR: Performs a fuzzy proximity-based textual search. A NEAR query of "car street" within 3
will match a sample text of the blue car drove down the street with the red building because
performing three word deletions in that phrase (drove, down, the) causes car and street to
become adjacent.

EMPTY: Search records when the attribute itself does not exist or when the attribute value is
null.

More generally, a NEAR query of "A B" within N matches a text document if you can perform at
most N insertions/deletions to your document and end up with A followed by B.

It is worth noting that "street car" within 3 will not match the above sample text because it is
not possible to match the phrase "street car" after only three insertions/deletions. "street car"
within 5 will match, though, as you can perform three word deletions to get "car street", one
deletion of one of the two words, and one insertion on the other side.

If multiple terms are used in the phrase, then the within amount specifies the total number of
edits that can be made to attempt to make the full phrase match. "car down street” within 2 will
match the above text because it takes two word deletions (drove, the) to turn the phrase car
drove down the street into car down street.

Temporal:
BEFORE: Search records before a specified time.
AFTER: Search records after a specified time.
RELATIVE Search records relative to the current time.

EMPTY: Search records when the attribute itself does not exist or when the attribute value is
null.

Spatial:
INTERSECTS: Gives a component with the same functionality as Basic Spatial Search.

EMPTY: Search records when the attribute itself does not exist or when the attribute value is
null.

Numeric:
>: Search records with field entries greater than the specified value.
>=: Search records with field entries greater than or equal to the specified value.
=: Search records with field entries equal to the specified value.
<=: Search records with field entries less than or equal to the specified value.
<: Search records with field entries less than the specified value.

EMPTY: Search records when the attribute itself does not exist or when the attribute value is
null.

11.4.1.1.1. Editing Search Settings

An existing search’s settings can be modified by selecting the search in the Search tab of a workspace
and by clicking the Settings (E) icon. Sorting and sources can be customized here.

11.4.1.1.2. Editing Search Notifications

An existing search’s notifications can be modified by selecting the search in the Search tab of a

workspace and by clicking the Notifications (n) icon. Notification frequency can be customized
here.

11.4.1.1.3. Viewing Search Status
An existing search’s status can be viewed by selecting the search in the Search tab of a workspace and

by clicking the Status (.) icon. The Status view for a search displays information about the sources
searched.

185

Intersecting Polygon Searchs

If a self intersecting polygon is used to perform a geographic search, the polygon will
be converted into a non-intersection one via a convex hull conversion. In the example
below the blue line shows the original self intersecting search polygon and the red line
shows the converted polygon that will be used for the search. The blue dot shows a
search result that was not within the original polygon but was returned because it was
within the converted polygon.

NOTE

Figure 5. Self Intersecting Polygon Conversion Example

11.4.1.2. Refining Search Results

Returned search results can be refined further, bookmarked, and/or downloaded from the Search tab.
Result sets are color-coded by source as a visual aid. There is no semantic meaning to the colors
assigned.

Filter@© T

Figure 6. Search Results Options

186

1. On the Search tab, select a search from the drop-down list.
2. Perform any of these actions on the results list of the selected search:
a. Filter the result set locally. This does not re-execute the search.
b. Customize results sorting. The default sort is by title in ascending order.

c. Toggle results view between List and Gallery.

11.4.1.3. Search Result Options

Options for each individual search result

* Download: Downloads the result’s associated product directly to the local machine. This option is
only available for results that have products.

* Bookmark: Adds/removes the results to/from the saved bookmarks.
e Hide from Future Searches: Adds to a list of results that will be hidden from future searches.
* Expand Metacard View: Navigates to a view that only focuses on this particular result.

* Create Search from Location: Searches for all records that intersect the current result’s location
geometry.

11.4.2. Lists Tab
Lists organize results and enable performing actions on those sets of results.

1. Perform any of these actions on lists:
a. Filter the result set locally (does not re-execute the search),
b. Customize results sorting (Default: Title in Ascending Order).

c. Toggle results view between List and Gallery.

NOTE Lists are not available to guest users.

11.4.2.1. Creating a List

A new list can be created by selecting the Lists tab and selecting the new list text.

187

= SAMPLE WORKSPACE Q Sea

Search Lists

You don't have any lists. | Search for
something and add it to a list or create
a new list .

11.4.2.2. Adding/Removing Results to a List

Results can be added to a list by selecting the + icon on a result.

188

= SAMPLE WORKSPACE
Search Lists

SAMPLE SEARCH
1 results

VAT o e e e
vy SE001 I'_i S diEi)
y

> & B X

Filter ¥ Sort e List =

& SAMPLE METACARD

+

Results can be added or removed to/from a list through the result’s dropdown menu.

189

M SAMPLE LIST

Filter T S0t List =

B SAMPLE METACARD

.

B SAMPLE METACARD 2 Add / Remove from List w
Hide from Future Searches
Expand Metacard View
Create Search from Location

Export as w»

11.5. Viewing Search Results

11.5.1. Adding Visuals

Visuals are different ways to view search results.

Add Visual L

Click the Add Visual (|) icon in the bottom right corner of Intrigue.
2. Select a visual to add.
a. 2D Map: A 2 dimensional map view.

b. 3D Map: A 3 dimensional map view.

(@)

. Inspector: In depth details and actions for the results of a search.

o

. Histogram: A configurable histogram view for the results of a search.

e. Table: A configurable table view for the results of a search.

The Search tab displays a list of all of the search results for the selected search. The Inspector visual
provides in depth information and actions for each search result.

190

Summary

A summarized view of the result.

Details

A detailed view of the result.

History

View revision history of this record.

Associations

View or edit the relationship(s) between this record and others in the catalog.

Quality

View the completeness and accuracy of the metadata for this record.

Actions

Export the metadata/resource to a specific format.

Archive

Remove the selected result from standard search results.

Overwrite

Overwrite a resource.

11.5.2. Editing Records

Results can be edited from the Summary or Details tabs in the Inspector visual.

11.5.3. Viewing Text Previews

If a preview for a result is available, an extra tab will appear in the Inspector visual that allows you to
see a preview of the resource.

11.5.4. Editing Associations on a Record
Update relationships between records through Associations.

Select the desired result from the Search tab.
Select the Inspector visual.
Select the Associations tab.

Select Edit.

SR

For a new association, select Add Association. Only items in the current result set can be added as
associations.

191

a. Select the related result from either the Parent or Child drop-down.
b. Select the type of relationship from the Relationship drop-down.
c. Select Save.
6. To edit an existing association, update the selections from the appropriate drop-downs and select

Save.

View a graphical representation of the associations by selecting Graph icon from the Associations
menu.

All associations ¥ Graph &

List

Graph +

Figure 7. Associations menu.

11.5.5. Viewing Revision History
View the complete revision history of a record.

1. Select the desired result from the Search tab.
2. Select the Inspector visual.
3. Select the History tab.

a. Select a previous version from the list.

b. Select Revert to Selected Version to undo changes made after that revision.

11.5.6. Viewing Metadata Quality

View and fix issues with metadata quality in a record.
NOTE Correcting metadata issues may require administrative permissions.

1. Select the desired result from the Search tab.
2. Select the Inspector visual.
3. Select the Quality tab.
4. A report is displayed showing any issues:
a. Metacard Validation Issues.

b. Attribute Validation Issues.

192

11.5.7. Exporting a Result
Export a result’s metadata and/or resource.

1. Select the desired result from the Search tab.
2. Select the Inspector visual.

3. Select Actions tab.

4. Select the desired export format.

5

. Export opens in a new browser tab. Save, if desired.

11.5.8. Archiving a Result
To remove a result from the active search results, archive it.

Select the desired result from the Search tab.
Select the Inspector visual.
Select the Archive tab.

Select Archive item(s).

S A

Select Archive.

11.5.9. Restoring Archived Results

Restore an archived result to return it to the active search results.

. Select the Search Archived option from the Search Results Options menu.
. Select the desired result from the Search tab.

. Select the Inspector visual.

1
2
3
4. Select the Archive tab.
5. Select Restore item(s).
6

. Select Restore.
Restore hidden results to the active search results.

1. Select the Settings (E]) icon on navigation bar.
2. Select Hidden.

> Click on the eye () icon next to each result to be unhidden.

a. Or select Unhide All to clear the list.

193

@ Unhide All

30922797_3ab024eab2_o.jpg @

11.5.10. Overwriting a Resource

Replace a resource.

1. Select the desired result from the Search tab.
. Select the Inspector visual.

. Select the Overwrite tab.

2
3
4. Select Overwrite content.
5. Select Overwrite

6

. Navigate to the new content via the navigation window.

11.5.11. Intrigue Settings

Customize the look and feel of Intrigue using the Settings (E) menu on the navigation bar.

194

A Guestdi

A Notifications

@ Map

Q Query

® Time

& Hidden

Figure 8. Settings Menu Options

» Theme: Visual options for page layout.

* Notifications: Select if notifications persist across sessions.
* Map: Select options for map layers.

* Query: Customize the number of search results returned.

e Time: Set the time format (ISO-8601, 24 Hour or 12 Hour), as well as the timezone (UTC-12:00
through UTC+12:00).

Hidden: View or edit a list of results that have been hidden from the current search results.

195

11.5.12. Intrigue Notifications

Notifications can be checked/dismissed by clicking the Notifications icon (n) on the navigation
bar.

11.5.13. Intrigue Low Bandwidth Mode

Low bandwidth mode can be enabled by passing in a ?lowBandwidth parameter along with any URL
targeting the Intrigue endpoint. Ex: https://{FQDN}:{PORT}/search/catalog/?lowBandwidth#workspaces.
Currently, enabling this parameter causes the system to prompt the user for confirmation before
loading potentially bandwidth-intensive components like the 2D or 3D Maps.

12. Using the Simple Search

The DDF Simple Search UI application provides a low-bandwidth option for searching records in the
local Catalog (provider) and federated sources. Results are returned in HTML format.

12.1. Search

The Input form allows the user to specify keyword, geospatial, temporal, and type query parameters. It
also allows the user to select the sources to search and the number of results to return.

12.1.1. Search Criteria
Enter one or more of the available search criteria to execute a query:

Keyword Search

A text box allowing the user to enter a textual query. This supports the use of (*) wildcards. If blank,
the query will contain a contextual component.

Temporal Query

Select from any, relative, or absolute. Selecting Any results in no temporal restrictions on the
query, selecting relative allows the user to query a period from some length of time in the past until
now, and selecting absolute allows the user to specify a start and stop date range.

Spatial Search

Select from any, point-radius, and bounding box. Selecting Any results in no spatial restrictions on
the query, selecting point-radius allows the user to specify a lat/lon and radius to search, and
selecting a bounding box allows the user to specify an eastern, western, southern and northern
boundary to search within.

Type Search

Select from any, or a specific type. Selecting Any results in no type restrictions on the query, and

196

https://{FQDN}:{PORT}/search/catalog/?lowBandwidth#workspaces
https://{FQDN}:{PORT}/search/catalog/?lowBandwidth#workspaces
https://{FQDN}:{PORT}/search/catalog/?lowBandwidth#workspaces
https://{FQDN}:{PORT}/search/catalog/?lowBandwidth#workspaces
https://{FQDN}:{PORT}/search/catalog/?lowBandwidth#workspaces
https://{FQDN}:{PORT}/search/catalog/?lowBandwidth#workspaces
https://{FQDN}:{PORT}/search/catalog/?lowBandwidth#workspaces
https://{FQDN}:{PORT}/search/catalog/?lowBandwidth#workspaces
https://{FQDN}:{PORT}/search/catalog/?lowBandwidth#workspaces
https://{FQDN}:{PORT}/search/catalog/?lowBandwidth#workspaces
https://{FQDN}:{PORT}/search/catalog/?lowBandwidth#workspaces

Selecting Specific Types shows a list of known content types on the federation, and allows the user
to select a specific type to search for.

Sources

Select from none, all sources, or specific sources. Selelcting None results in querying only the
local provider, Selecting All Sources results in an enterprise search where all federations are
queried, and selecting Specific Sources allows the user to select which sources are queried.

Results per Page
Select the number of results to be returned by a single query.

12.1.2. Results

The table of results shows the details of the results found, as well as a link to download the product if
applicable.

12.1.2.1. Results Summary

Total Results

Total Number of Results available for this query. If there are more results than the number
displayed per page then a page navigation links will appear to the right.

Pages
Provides page navigation, which generate queries for requesting additional pages of results.

12.1.2.2. Results Table

The Results table provides a preview of and links to the results. The table consists of these columns:

Title

Displays title of the metacard. This will be a link which can clicked to view the metacard in the
Metacard View.

Source

Displays where the metadata came from, which could be the local provider or a federated source.

Location

Displays the WKT Location of the metacard, if available.

Time

Shows the Received (Created) and Effective times of the metacard, if available.

Thumbnail

Shows the thumbnail of the metacard, if available.

197

Download

A download link to retrieve the product associated with the metacard, when applicable, if available.

12.1.3. Result View
This view shows more detailed look at a result.

Back to Results Button

Returns the view back to the Results Table.

Previous & Next

Navigation to page through the results one by one.

Result Table

Provides the list of properties and associated values of a single search result.

Metadata

The metadata, when expanded, displays a tree structure representing the result’s custom metadata.

Integrating

If integrating with a Highly Available Cluster of DDF, see High Availability

WARNING .
Guidance.

DDF is structured to enable flexible integration with external clients and into larger component
systems.

If integrating with an existing installation of DDF, continue to the following sections on endpoints and
data/metadata management.

If a new installation of DDF is required, first see the Managing section for installation and
configuration instructions, then return to this section for guidance on connecting external clients.

If you would like to set up a test or demo installation to use while developing an external client, see the
Quick Start Tutorial for demo instructions.

For troubleshooting and known issues, see the Release Notes (.

13. Endpoints

Federation with DDF is primarily accomplished through Endpoints accessible through http(s) requests
and responses.

198

https://codice.atlassian.net/wiki/spaces/DDF/pages/71275152/Release+Notes

Not all installations will expose all available endpoints. Check with DDF administrator

NOTE
to confirm availability of these endpoints.

13.1. Ingest Endpoints
Ingest is the process of getting data and/or metadata into the DDF catalog framework.
These endpoints are provided by DDF to be used by integrators to ingest content or metadata.

Catalog REST Endpoint
Uses REST to interact with the catalog.

CSW Endpoint

Searches collections of descriptive information (metadata) about geospatial data and services.

FTP Endpoint
Ingests files directly into the DDF catalog using the FTP protocol.

13.2. CRUD Endpoints

To perform CRUD (Create, Read, Update, Delete) operations on data or metadata in the catalog, work
with one of these endpoints.

Catalog REST Endpoint
Uses REST to interact with the catalog.

CSW Endpoint

Searches collections of descriptive information (metadata) about geospatial data and services.

Queries Endpoint

To perform CRUD (Create, Read, Update, Delete) operations on query metacards in the catalog, work
with one of these endpoints.

13.3. Query Endpoints

Query data or metadata stored within an instance of DDF using one of these endpoints.

CSW Endpoint

Searches collections of descriptive information (metadata) about geospatial data and services.

OpenSearch Endpoint

Sends query parameters and receives search results.

199

13.4. Content Retrieval Endpoints

To retrieve content from an instance of DDF, use one of these endpoints.

Catalog REST Endpoint
Uses REST to interact with the catalog.

13.5. Pub-Sub Endpoints

These endpoints provide publication and subscription services to allow notifications when certain
events happen within DDF.

CSW Endpoint
Searches collections of descriptive information (metadata) about geospatial data and services.

13.6. Endpoint Details

13.6.1. Catalog REST Endpoint

The Catalog REST Endpoint allows clients to perform operations on the Catalog using REST, a simple
architectural style that performs communication using HTTP.

Bulk operations are not supported: for all RESTful CRUD commands, only one metacard ID is supported
in the URL.

The Catalog REST Endpoint can be used for one or more of these operations on an instance of DDF:

» Ingest metacards or resources into the DDF catalog.
* Retrieve metacards or resources from the catalog.

* Update metacards or resources in the catalog.

* Delete resources and metadata from the catalog.

* Get information about configured sources.

This example metacard can be used to test the integration with DDF.

200

Example Metacard

<?xml version="1.0" encoding="UTF-8"?>
<metacard xmlns="urn:catalog:metacard" xmlns:gml="http://www.opengis.net/gml"
xmlns:xLlink="http://www.w3.0rg/1999/x1ink" xmlns:smil="http://www.w3.0rg/2001/SMIL20/"
xmlns:smillang="http://www.w3.0rqg/2001/SMIL20/Lanquage” gml:id=
"3359483bad4e403a9f0044580343007e">
<type>ddf.metacard</type>
<string name="title">
<value>Test REST Metacard</value>
</string>
<string name="description">
<value>Vestibulum quis ipsum sit amet metus imperdiet vehicula. Nulla scelerisque
cursus mi.</value>
</string>
</metacard>

13.6.1.1. Catalog REST Create Operation Examples

The REST endpoint can be used to upload resources as attachments.

Send a POST request with the input to be ingested contained in the HTTP request body to the endpoint.

Create Request URL

https://<FQDN>:<PORT>/services/catalog/

Example Create Request

POST /services/catalog?transform=xml HTTP/1.1

Host: <FQDN>:<PORT>

Content-Type: multipart/form-data; boundary=----WebKitFormBoundary7MA4YWxkTrZu@gW
Cache-Control: no-cache

—————— WebKitFormBoundary7MA4YWxkTrZu@gW
Content-Disposition: form-data; name="parse.resource"; filename=
Content-Type:

—————— WebKitFormBoundary7MA4YWxkTrZu@gW
Content-Disposition: form-data; name="parse.metadata"; filename=
Content-Type:

—————— WebKitFormBoundary7MA4YWxkTrZu@gW--

201

The create and update methods both support the multipart mime format. If only a single attachment
exists, it will be interpreted as a resource to be parsed, which will result in a metacard and resource
being stored in the system.

If multiple attachments exist, then the REST endpoint will assume that one attachment is the actual
resource (attachment should be named parse.resource) and the other attachments are overrides of
metacard attributes (attachment names should follow metacard attribute names). In the case of the
metadata attribute, it is possible to also have the system transform that metadata and use the results of
that to override the metacard that would be generated from the resource (attachment should be
named parse.metadata).

Create Success

If the ingest is successful, a status of 201 Created will be returned, along with the Metacard ID in the
header of the response.

Request with Non-XML Data

If a request with non-XML data is sent to the Catalog REST endpoint, the metacard will
be created but the resource will be stored in the metadata field. This could affect
discoverability.

NOTE

If content or metadata is not ingested successfully, check for these error messages.

Table 33. Create Error Responses
Status Code Error Message Possible Causes

Malformed XML Response: If the XML
being ingested has formatting errors.

Request with Unknown Schema: If ingest is
<pre>Error while storing attempted with a schema that is unknown,
400 Bad Request entry in catalog: </pre> unsupported, or not configured by the
endpoint, DDF creates a generic resource
metacard with the provided XML as
content for the metadata XML field in the
metacard.

13.6.1.2. Catalog REST Read Operation Examples

The read operation can be used to retrieve metadata in different formats.

1. Send a GET request to the endpoint.

2. Optionally add a transform query parameter to the end of the URL with the transformer to be used
(such as transform=kml). By default, the response body will include the XML representation of the
Metacard.

202

Read Request URL

https://<FQDN>:<PORT>/services/catalog/<metacardId>

If successful, a status of 200 0K will be returned, along with the content of the metacard requested.

Read Success Response Example

<metacard xmlns="urn:catalog:metacard" xmlns:gml="http://www.opengis.net/gml"
xmlns:xlink="http://www.w3.0rg/1999/x1ink" xmlns:smil="http://www.w3.0rg/2001/SMIL20/"
xmlns:smillang="http://www.w3.0rg/2001/SMIL20/Language" gml:id="<METACARD_ID>">
<type>ddf.metacard</type>
<source>ddf.distribution</source>
<string name="title">
<value>Test REST Metacard</value>
</string>
<string name="point-of-contact">
<value>email@example.com</value>
</string>
<dateTime name="metacard.created">
<value>2019-08-13</value>
</dateTime>
<dateTime name="effective">
<value>2019-08-13</value>
</dateTime>
<dateTime name="modified">
<value>2019-08-13</value>
</dateTime>
<dateTime name="created">
<value>2019-08-13</value>
</dateTime>
<string name="description">
<value>Vestibulum quis ipsum sit amet metus imperdiet vehicula. Nulla scelerisque
cursus mi.</value>
</string>
<string name="metacard-tags">
<value>resource</value>
<value>VALID</value>
</string>
<dateTime name="metacard.modified">
<value>2019-08-13</value>
</dateTime>
</metacard>

* To receive metadata in an alternate format, add a transformer to the request URL.

203

Metacard Transform Request URL

https://<FQDN>:<PORT>/services/catalog/<metacardId>?transform=<TRANSFORMER_ID>

Metacard Transform Response (transform=geojson)

{
"geometry": null,
"type": "Feature",
"properties": {
"effective": "2019-08-13",
"point-of-contact": "email@example.com",
"created": "2019-08-13",
"metacard.modified": "2019-08-13",
"metacard-tags": [
"resource",
"VALID"
1.
"modified": "2019-08-13",
"description": "Vestibulum quis ipsum sit amet metus imperdiet vehicula. Nulla
scelerisque cursus mi.",
"id": "3a59483bad4e403a9f0044580343007e",
"metacard-type": "ddf.metacard",
"title": "Test REST Metacard",
"source-id": "ddf.distribution",
"metacard.created": "2019-08-13"

To retrieve a metacard from a specific federated source, add sources/<SOURCE_ID> to the URL.

Federated Read Request URL

https://<FQDN>:<PORT>/services/catalog/sources/<sourceld>/<metacardId>?transform=<TRANSFO
RMER_ID>

To retrieve the resource associated with a metacard, use the resource transformer with the GET request.

Retrieve Resource Request URL

https://<FQDN>:<PORT>/services/catalog/<metacardId>?transform=resource

See Metacard Transformers for details on metacard transformers.

Read Error Response Examples

204

If the metacard or resource is not returned successfully, check for these errors.

Table 34. Read Error Responses

Status Code Error Message Possible Causes

404 Not Found <pre>Unable to retrieve Invalid Metacard ID
requested metacard.</pre>

<pre>Unknown error occurred Transformer is invalid, unsupported, or

while processing not configured.

request.</pre>

<pre>Unable to transform Metacard does not have an associated
500 Server Error Metacard. Try different resource (is metadata only)

transformer: </pre> '

<pre>READ failed due to Invalid source ID, or source unavailable.

unexpected exception:
</pre>

13.6.1.3. Catalog Rest Update Operation Examples

To update the metadata for a metacard, send a PUT request with the ID of the Metacard to be updated
appended to the end of the URL and the updated metadata is contained in the HTTP body.

Optionally, specify the transformer to use when parsing an override of a metadata attribute.

Update Request URL

https://<FQDN>:<PORT>/<metacardId>?transform=<input transformer>

Table 35. Update Error Response Examples

Status Code Error Message Possible Causes

400 Bad Request <pre>Error cataloging Invalid metacard ID.
updated metadata: </pre>

500 Server Error <pre>Error cataloging Invalid transformer ID.

updated metadata: </pre>

13.6.1.4. Catalog REST Delete Operation Examples

To delete a metacard, send a DELETE request with the metacard ID to be deleted appended to the end of
the URL.

Delete Request URL

https://<FQDN>:<PORT>/<metacardId>

Table 36. Delete Error Response Examples

205

Status Code Error Message Possible Causes

400 Bad Request <pre>Error deleting entry Invalid metacard ID.
from catalog: </pre>

13.6.1.5. Catalog REST Sources Operation Examples

To retrieve information about federated sources, including sourceld, availability, contentTypes,and
version, send a GET request to the endpoint.

Sources Response URL

https://<FQDN>:<PORT>//sources/

Sources Response Example

[
{
"id" : "DDF-0S",
"available" : true,
"contentTypes" :
[
1,
"version" : "2.16.1"
iy
{
"id" : "ddf.distribution",
"available" : true,
"contentTypes" :
[
1,
"version" : "2.16.1"
}
]

Table 37. Sources Error Responses

Status Code Error Message Possible Causes

403 <p>Problem accessing Connection error or service unavailable.
[ErrorServlet. Reason: <pre>
Forbidden</pre></p>"

13.6.2. CSW Endpoint

The CSW endpoint enables a client to search collections of descriptive information (metadata) about
geospatial data and services.

206

The CSW endpoint supports metadata operations only.
For more information about the Catalogue Services for Web (CSW) standard .
The CSW Endpoint can be used for one or more of these operations on an instance of DDF:

* Ingest metadata into the DDF catalog.
* Read metacards from the catalog.

* Update metadata in the catalog.

Publish and/or subscribe to catalog events.

* Delete metadata from the catalog.

Get capabilities of the catalog and the URLs used to access.

Sample Responses May Not Match Actual Responses

NOTE Actual responses may vary from these samples, depending on your configuration. Send
a GET or POST request to obtain an accurate response.

13.6.2.1. CSW Endpoint Create Examples

Metacards are ingested into the catalog via the Insert sub-operation.

The schema of the record needs to conform to a schema of the information model that the catalog
supports.

Send a POST request to the CSW endpoint URL.

CSW Endpoint Ingest URL

https://<FQDN>:<PORT>/services/csw

Include the metadata to ingest within a csw:Insert block in the body of the request.

207

http://www.opengeospatial.org/standards/cat2eoext4ebrim

Sample XML Transaction Insert Request

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<csw:Transaction

service="CSW"

version="2.0.2"

verboseResponse="true"
xmlns:csw="http://www.opengis.net/cat/csw/2.0.2">

<csw:Insert

typeName="csw:Record">

<csw:Record
xmlns:ows="http://www.opengis.net/ows"
xmlns:csw="http://www.opengis.net/cat/csw/2.0.2"
xmlns:de="http://purl.org/dc/elements/1.1/"
xmlns:dct="http://purl.org/dc/terms/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<dc:
:title>Aliquam fermentum purus quis arcu</dc:title>
<dc:
<dc:
<dc:
<dc:
<dct:abstract>Vestibulum quis ipsum sit amet metus imperdiet vehicula.

<dc

identifier></dc:identifier>

type>http://purl.org/dc/dcmitype/Text</dc:type>
subject>Hydrography--Dictionaries</dc:subject>
format>application/pdf</dc:format>
date>2019-08-13</dc:date>

scelerisque cursus mi.</dct:abstract>
<ows :BoundingBox crs="urn:x-ogc:def:crs:EPSG:6.11:4326">

<ows:LowerCorner>44.792 -6.171</ows:LowerCorner>
<ows:UpperCorner>51.126 -2.228</ows:UpperCorner>

</ows :BoundingBox>
</csw:Record>
</csw:Insert>
</csw:Transaction>

Nulla

To specify the document type being ingested and select the appropriate input transformer, use the
typeName attribute in the csw:Insert element

<csw:Insert typeName="xml">

To receive a copy of the metacard in the response, specify verboseResponse="true" in the
csw:Transaction. The InsertResult element of the response will hold the metacard information added

to the catalog.

<esw:Transaction service="CSW" version="2.0.2" verboseResponse="true" [...]

208

Sample XML Transformer Insert

<csw:Transaction service="CSW" version="2.0.2" verboseResponse="true" xmlns:csw=
"http://www.opengis.net/cat/csw/2.0.2">
<csw:Insert typeName="xml">
<metacard xmlns="urn:catalog:metacard" xmlns:ns2="http://www.opengis.net/gml"
xmlns:ns3="http://www.w3.0rg/1999/x1ink" xmlns:ns4=
"http://www.w3.0rqg/2001/SMIL20/"
xmlns:ns5="http://www.w3.0rqg/2001/SMIL20/Language">
<type>ddf.metacard</type>
<string name="title">
<value>PlainXml near</value>
</string>
</metacard>
</csw:Insert>
</csw:Transaction>

A successful ingest will return a status of 200 0K and csw:TransactionResponse.

209

Sample XML Transaction Insert Response

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<csw:TransactionResponse xmlns:oge="http://www.opengis.net/ogc"
xmlns:gml="http://www.opengis.net/gml"
xmlns:ns3="http://www.w3.0rg/1999/x1ink"
xmlns:csw="http://www.opengis.net/cat/csw/2.0.2"
xmlns:ns5="http://www.w3.0rg/2001/SMIL20/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:ows="http://www.opengis.net/ows"
xmlns:dct="http://purl.org/dc/terms/"
xmlns:ns9="http://www.w3.0rqg/2001/SMIL20/Language"
xmlns:ns10="http://www.w3.0rg/2001/XMLSchema-instance"
version="2.0.2"
ns10:schemalocation="http://www.opengis.net/csw
/ogc/csw/2.0.2/CSW-publication.xsd">
<csw:TransactionSummary>
<csw:totallnserted>1</csw:totallnserted>
<csw:totalUpdated>0</csw:totalUpdated>
<csw:totalDeleted>0</csw:totalDeleted>
</csw:TransactionSummary>
<csw:InsertResult>
<csw:BriefRecord>
<dc:identifier><METACARD ID</dc:identifier>
<dc:title>Aliquam fermentum purus quis arcu</dc:title>
<dc:type>http://purl.org/dc/dcmitype/Text</dc:type>
<ows:BoundingBox crs="EPSG:4326">
<ows:LowerCorner>-6.171 44.792</ows:LowerCorner>
<ows:UpperCorner>-2.228 51.126</ows:UpperCorner>
</ows:BoundingBox>
</csw:BriefRecord>
</csw:InsertResult>
</csw:TransactionResponse>

Table 38. Create Error Response Examples

Status Code Error Message Possible Causes

XML error. Check for formatting errors in

ExceptionText with record.

description of error. Schema error. Verify metadata is
compliant with defined schema.

400 Bad Request

13.6.2.2. CSW Endpoint Query Examples

To query through the CSW Enpoint, send a POST request to the CSW endpoint.

210

CSW Endpoint Query URL

https://<FQDN>:<PORT>/services/csw

Within the body of the request, include a GetRecords operation to define the query. Define the service
and version to use (CSW, 2.0.2). The output format must be application/xml. Specify the output schema.
(To get a list of supported schemas, send a Get Capabilities request to the CSW endpoint.)

GetRecords Syntax

<GetRecords xmlns="http://www.opengis.net/cat/csw/2.0.2"
xmlns:ogce="http://www.opengis.net/ogc"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
service="CSW"
version="2.0.2"
maxRecords="4"
startPosition="1"
resultType="results"
outputFormat="application/xml"
outputSchema="http://www.opengis.net/cat/csw/2.0.2"
xsi:schemalocation="http://www.opengis.net/cat/csw/2.0.2 ../../../csw/2.0.2/CSW-
discovery.xsd">

Include the query within the GetRecords request. Optionally, set the ElementSetName to determine how
much detail to return.

* Brief: the least possible detail.
* Summary: (Default)

o Full: All metadata elements for the record(s).

Within the Constraint element, define the query as an OSG or CQL filter.

<Query typeNames="Record">
<ElementSetName>summary</ElementSetName>
<Constraint version="1.1.0">
<ogc:Filter>
<ogc:PropertylIsLike wildCard="%" singleChar="_
<ogc:PropertyName>AnyText</ogc:PropertyName>
<ogc:Literal>%</ogc:Literal>
</ogc:PropertyIsLike>
</ogc:Filter>
</Constraint>
</Query>

escapeChar="\">

211

<Query typeNames="Record">
<ElementSetName>summary</ElementSetName>
<Constraint version="2.0.0">
<ogc:CqlText>
"AnyText" = '%
</ogc:CqlText>
</csw:Constraint>
</Query>

GetRecords XML Request Example

<?xml version="1.0" 7>

<GetRecords xmlns="http://www.opengis.net/cat/csw/2.0.2"
xmlns:oge="http://www.opengis.net/ogc"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
service="CSW"
version="2.0.2"
maxRecords="4"
startPosition="1"
resultType="results"
outputFormat="application/xml"
outputSchema="http://www.opengis.net/cat/csw/2.0.2"
xsi:schemalocation="http://www.opengis.net/cat/csw/2.0.2 ../../../csw/2.0.2/CSW-

discovery.xsd">

<Query typeNames="Record">
<ElementSetName>summary</ElementSetName>
<Constraint version="1.1.0">
<ogc:Filter>
<ogc:PropertyIsLike wildCard="%" singleChar="_"
<ogc:PropertyName>AnyText</ogc:PropertyName>
<ogc:Literal>%</ogc:Literal>
</ogc:PropertylIsLike>
</ogc:Filter>
</Constraint>
</Query>
</GetRecords>

escapeChar="\">

212

GetRecords Sample Response (application/xml)

<?xml version='1.0"' encoding="UTF-8'?>
<csw:GetRecordsResponse xmlns:dct="http://purl.org/dc/terms/"
xmlns:xml="http://www.w3.0rg/XML/1998/namespace"
xmlns:csw="http://www.opengis.net/cat/csw/2.0.2"
xmlns:ows="http://www.opengis.net/ows"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:dc="http://purl.org/dc/elements/1.1/" version="2.0.2">
<csw:SearchStatus timestamp="2019-08-13"/>
<csw:SearchResults numberOfRecordsMatched="1" numberOfRecordsReturned="1" nextRecord="
0" recordSchema="http://www.opengis.net/cat/csw/2.0.2" elementSet="summary">
<csw:Record xmlns:ows="http://www.opengis.net/ows"
xmlns:csw="http://www.opengis.net/cat/csw/2.0.2"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:dct="http://purl.org/dc/terms/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<dc:identifier/>
<dc:title>Aliquam fermentum purus quis arcu</dc:title>
<dc:type>http://purl.org/dc/dcmitype/Text</dc:type>
<dc:subject>Hydrography--Dictionaries</dc:subject>
<dc:format>application/pdf</dc:format>
<dc:date>2019-08-13</dc:date>
<dct:abstract>Vestibulum quis ipsum sit amet metus imperdiet vehicula. Nulla
scelerisque cursus mi.</dct:abstract>
<ows:BoundingBox crs="urn:x-ogc:def:crs:EPSG:6.11:4326">
<ows:LowerCorner>44.792 -6.171</ows:LowerCorner>
<ows:UpperCorner>51.126 -2.228</ows:UpperCorner>
</ows:BoundingBox>
</csw:Record>
</csw:SearchResults>
</csw:GetRecordsResponse>

Querying a Specific Source with the CSW Endpoint

To query a Specific Source, specify a query for a source-id. To find a valid source-id , send a Get
Capabilities request. Configured sources will be listed in the FederatedCatalogs section of the response.

The DistributedSearch element must be specific with a hopCount greater than 1 to

NOTE
identify it as a federated query, otherwise the source-id's will be ignored.

213

Querying a Specific Source Sample Request

<?xml version="1.0" 7>
<csw:GetRecords resultType="results"
outputFormat="application/xml"
outputSchema="urn:catalog:metacard"
startPosition="1"
maxRecords="10"
service="CSW"
version="2.0.2"
xmlns:ns2="http://www.opengis.net/ogc" xmlns:csw=
"http://www.opengis.net/cat/csw/2.0.2" xmlns:ns4="http://www.w3.0rg/1999/x1ink"
xmlns:ns3="http://www.opengis.net/gml" xmlns:ns9="http://www.w3.0rg/2001/SMIL20/Language"
xmlns:ns5="http://www.opengis.net/ows" xmlns:ns6="http://purl.org/dc/elements/1.1/"
xmlns:ns7="http://purl.org/dc/terms/" xmlns:ns8="http://www.w3.0rg/2001/SMIL20/">
<csw:DistributedSearch hopCount="2" />
<ns10:Query typeNames="csw:Record" xmlns=
"http://www.opengis.net/cat/csw/2.0.2">
<ns10:ElementSetName>full</ns10:ElementSetName>
<ns10:Constraint version="1.1.0">
<ns2:Filter>
<ns2:And>
<ns2:PropertyIsEqualTo wildCard="*" singleChar="#" escapeChar="1">
<ns2:PropertyName>source-id</ns2:PropertyName>
<ns2:Literal>Sourcel</ns2:Literal>
</ns2:PropertylskqualTo>_
<ns2:PropertyIslLike wildCard="*" singleChar="#" escapeChar="1">
<ns2:PropertyName>title</ns2:PropertyName>
<ns2:Literal>*</ns2:Literal>
</ns2:PropertyIsLike>
</ns2:And>
</ns2:Filter>
</ns10:Constraint>
</ns10:Query>
</csw:GetRecords>

xmlns:ns10=

Querying for GMD Output Schema

To receive a response to a GetRecords query that conforms to the GMD specification, set the
Namespace(xmlns),outputschema, and typeName elements for GML schema.

214

GML Output Schema Sample Request

<?xml version="1.0" 7>
<GetRecords xmlns="http://www.opengis.net/cat/csw/2.0.2"
xmlns:oge="http://www.opengis.net/ogc"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:gmd="http://www.isotc211.0rqg/2005/gmd"
xmlns:gml="http://www.opengis.net/gml"
service="CSW"
version="2.0.2"
maxRecords="8"
startPosition="1"
resultType="results"
outputFormat="application/xml"
outputSchema="http://www.isotc211.0rg/2005/gmd"
xsi:schemalocation="http://www.opengis.net/cat/csw/2.0.2 ../../../csw/2.0.2/CSW-
discovery.xsd">
<Query typeNames="gmd:MD_Metadata">
<ElementSetName>summary</ElementSetName>
<Constraint version="1.1.0">
<ogc:Filter>
<ogc:PropertyIslLike wildCard="%" singleChar="_" escapeChar="\">
<ogc:PropertyName>apiso:Title</ogc:PropertyName>
<ogc:Literal>%</ogc:Literal>
</ogc:PropertyIsLike>
</ogc:Filter>
</Constraint>
</Query>
</GetRecords>

Querying by UTM Coordinates

UTM coordinates can be used when making a CSW GetRecords request using an ogc:Filter. UTM
coordinates should use EPSG:326XX‘as the ‘srsName where XX is the zone within the northern
hemisphere. UTM coordinates should use EPSG:327XX as the srsName where XX is the zone within the
southern hemisphere.

UTM coordinates are only supported with requests providing an ogc:Filter, but not

NOTE
with CQL as there isn’t a way to specify the UTM srsName in CQL.

215

UTM Northern Hemisphere Zone 36 Sample Request

<GetRecords xmlns="http://www.opengis.net/cat/csw/2.0.2"
xmlns:oge="http://www.opengis.net/ogc"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:gml="http://www.opengis.net/gml"
service="CSW"
version="2.0.2"
maxRecords="4"
startPosition="1"
resultType="results"
outputFormat="application/xml"
outputSchema="http://www.opengis.net/cat/csw/2.0.2"
xsi:schemalocation="http://www.opengis.net/cat/csw/2.0.2 ../../../csw/2.0.2/CSW-
discovery.xsd">
<Query typeNames="Record">
<ElementSetName>summary</ElementSetName>
<Constraint version="1.1.0">
<ogc:Filter>
<ogc:Intersects>
<ogc:PropertyName>ows :BoundingBox</ogc:PropertyName>
<gml:Envelope srsName="EPSG:32636">
<gml:lowerCorner>171070 1106907</gml:lowerCorner>
<gml:upperCorner>225928 1106910</gml:upperCorner>
</gml:Envelope>
</ogc:Intersects>
</ogc:Filter>
</Constraint>
</Query>
</GetRecords>

Querying by Metacard ID
To locate a record by Metacard ID, send a POST request with a GetRecordById element specifying the ID.

216

GetRecordById Request Example

<GetRecordById xmlns="http://www.opengis.net/cat/csw/2.0.2"

xmlns:ogc="http://www.opengis.net/ogc"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

service="CSW"

version="2.0.2"

outputFormat="application/xml"

outputSchema="http://www.opengis.net/cat/csw/2.0.2"

xsi:schemalocation="http://www.opengis.net/cat/csw/2.0.2

.o/./../csw/2.0.2/CSW-discovery.xsd">

<ElementSetName>full</ElementSetName>
<Id><METACARD-ID></Id>

</GetRecordById>

Table 39. CSW Record to Metacard Mapping

CSW Record Field Metacard Field Brief Record

dc:title title 1-n

dc:creator

dc:subject

dc:description

dc:publisher

dc:contributor

dc:date modified

dc:type metadata- 0-1
content-type

dc:format

dc:identifier id 1-n

dc:source source-id

dc:language

dc:relation

dc:coverage

dc:rights

dct:abstract description

dct:accessRights

dct:alternative title

dct:audience

Summary
Record

1-n

0-n

0-1

0-n

1-n

0-n

Record

0-n
0-n
0-n
0-n
0-n

0-n
0-n
0-n

217

CSW Record Field

det:
det:
det:
det:
det:
det:
det:
det:
det:
det:
det:
det:

det:

det:
det:
det:
det:
det:

det:
det:

dct
dct
dct

det:
det:
det:
det:
det:

218

available
bibliographicCitation
conformsTo
created
dateAccepted
Copyrighted
dateSubmitted
educationLevel
extent
hasFormat
hasPart

hasVersion

isFormatOf

isPartOf
isReferencedBy
isReplacedBy
isRequiredBy

issued

isVersionOf

license

:mediator
:medium

:modified

provenance
references
replaces
requires

rightsHolder

Metacard Field Brief Record

id

created

effective

effective

modified

modified

modified

Summary
Record

0-n

Record

0-n

CSW Record Field Metacard Field Brief Record Summary Record

Record
dct:spatial location 0-n 0-n
dct:tableOfContents 0-n
dct:temporal effective + " - 0-n
" + expiration
dct:valid expiration 0-n
ows : BoundingBox 0-n 0-n 0-n
Table 40. Query Error Response Examples
Status Code Error Message Possible Causes
400 Bad Request <ows: E).(CE[.)t'iOHTeXt>ddf .cata A query to a Speciﬁc source has Speciﬂed a
log.util.impl.CatalogQueryE o;pce that is unavailable.
xception:

ddf.catalog.federation.Fede
rationException: SiteNames
could not be resolved due
to invalid site names, none
of the sites were
available, or the current
subject doesn’t have
permission to access the
sites.</ows:ExceptionText>

200 OK <csw:SearchResults No results found for query. Verify input.
numberOfRecordsMatched="0"

numberOfRecordsReturned="0"
nextRecord="0"

13.6.2.3. CSW Endpoint Update Examples

The CSW Endpoint can edit the metadata attributes of a metacard.
Send a POST request to the CSW Endpoint URL:

CSW Endpoint Update URL

https://<FDQN>:<PORT>/services/csw

Replace the <METACARD-ID> value with the metacard id being updated, and edit any properties within
the csw:Record.

219

CSW Update Record Example

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<csw:Transaction
service="CSW"
version="2.0.2"
xmlns:csw="http://www.opengis.net/cat/csw/2.0.2">
<csw:Update>
<csw:Record
xmlns:ows="http://www.opengis.net/ows"
xmlns:csw="http://www.opengis.net/cat/csw/2.0.2"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:dct="http://purl.org/dc/terms/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<dc:identifier><METACARD-ID></dc:identifier>
<dc:title>Aliquam fermentum purus quis arcu</dc:title>
<dc:type>http://purl.org/dc/dcmitype/Text</dc:type>
<dc:subject>Hydrography--Dictionaries</dc:subject>
<dc:format>application/pdf</dc:format>
<dc:date>2019-08-13</dc:date>
<dct:abstract>Vestibulum quis ipsum sit amet metus imperdiet vehicula. Nulla
scelerisque cursus mi.</dct:abstract>
<ows:BoundingBox crs="urn:x-ogc:def:crs:EPSG:6.11:4326">
<ows:LowerCorner>44.792 -6.171</ows:LowerCorner>
<ows:UpperCorner>51.126 -2.228</ows:UpperCorner>
</ows:BoundingBox>
</csw:Record>
</csw:Update>
</csw:Transaction>

220

CSW Update Record Sample Response

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<csw:TransactionResponse xmlns:ows="http://www.opengis.net/ows"
xmlns:ns2="http://www.w3.0rg/1999/x1ink"
xmlns:oge="http://www.opengis.net/ogc"
xmlns:gml="http://www.opengis.net/gml"
xmlns:csw="http://www.opengis.net/cat/csw/2.0.2"
xmlns:nsb="http://www.w3.0rg/2001/SMIL20/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:dct="http://purl.org/dc/terms/"
xmlns:ns9="http://www.w3.0rqg/2001/SMIL20/Language"
xmlns:ns10="http://www.w3.0rg/2001/XMLSchema-instance" version=
"2.0.2"
ns10:schemalocation="http://www.opengis.net/csw
/ogc/csw/2.0.2/CSW-publication.xsd">
<csw:TransactionSummary>
<csw:totallnserted>0</csw:totallnserted>
<csw:totalUpdated>1</csw:totalUpdated>
<csw:totalDeleted>0</csw:totalDeleted>
</csw:TransactionSummary>
</csw:TransactionResponse>

Updating Individual Attributes

Within the csw:Transaction element, use the csw:RecordProperty to update individual metacard
attributes.

Use the Name element to specify the name of the record property to be updated and set the Value
element to the value to update in the record. The values in the Update will completely replace those that
are already in the record.

<csw:RecordProperty>
<csw:Name>title</csw:Name>
<csw:Value>Updated Title</csw:Value>

</csw:RecordProperty>

Removing Attributes

To remove a non-required attribute, send the csw:Name without a csw:Value.

<csw:RecordProperty>
<csw:Name>title</csw:Name>
</csw:RecordProperty>

Required attributes are set to a default value if no Value element is provided.

221

Table 41. RecordProperty Default Values
Property
metadata-content-type

created

modified

effective
metadata-content-type-version
metacard.created
metacard.modified
metacard-tags
point-of-contact

title

Default Value
Resource

current time
current time
current time
myVersion
current time
current time
resource, VALID
system@localhost

current time

Use a csw:Constraint to specify the metacard ID. The constraint can be an OGC Filter or a CQL query.

<csw:Constraint version="2.0.0">
<ogc:Filter>
<ogc:PropertyIskEqualTo>

<ogc:PropertyName>id</ogc:PropertyName>
<ogc:Literal><METACARD-ID></ogc:Literal>

</ogc:PropertylskqualTo>
</ogc:Filter>
</csw:Constraint>

<csw:Constraint version="2.0.0">
<ogc:CqlText>
"id" = '<METACARD-ID>'
</ogc:CqlText>
</csw:Constraint>

WARNING
affect desired records.

222

These filters can search on any arbitrary query criteria, but take care to only

Sample XML Transaction Update Request with OGC filter constraint

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<csw:Transaction
service="CSW"
version="2.0.2"
xmlns:csw="http://www.opengis.net/cat/csw/2.0.2"
xmlns:ogc="http://www.opengis.net/ogc">
<csw:Update>
<csw:RecordProperty>
<csw:Name>title</csw:Name>
<csw:Value>Updated Title</csw:Value>
</csw:RecordProperty>
<csw:Constraint version="2.0.0">
<ogc:Filter>
<ogc:PropertyIsEqualTo>
<ogc:PropertyName>id</ogc:PropertyName>
<ogc:Literal><METACARD-ID></ogc:Literal>
</ogc:PropertyIsEqualTo>
</ogc:Filter>
</csw:Constraint>
</csw:Update>
</csw:Transaction>

Sample XML Transaction Update Request with CQL filter constraint

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<csw:Transaction
service="CSW"
version="2.0.2"
xmlns:csw="http://www.opengis.net/cat/csw/2.0.2"
xmlns:ogc="http://www.opengis.net/ogc">
<csw:Update>
<csw:RecordProperty>
<csw:Name>title</csw:Name>
<csw:Value>Updated Title</csw:Value>
</csw:RecordProperty>
<csw:RecordProperty>
</csw:RecordProperty>
<csw:Constraint version="2.0.0">
<ogc:CqlText>
"id" = '<METACARD-ID>'
</ogc:CqlText>
</csw:Constraint>
</csw:Update>
</csw:Transaction>

223

Sample XML Transaction Update Response

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<csw:TransactionResponse xmlns:oge="http://www.opengis.net/ogc"
xmlns:gml="http://www.opengis.net/gml"
xmlns:ns3="http://www.w3.0rg/1999/x1ink"
xmlns:csw="http://www.opengis.net/cat/csw/2.0.2"
xmlns:ns5="http://www.w3.0rg/2001/SMIL20/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:ows="http://www.opengis.net/ows"
xmlns:dct="http://purl.org/dc/terms/"
xmlns:ns9="http://www.w3.0rqg/2001/SMIL20/Language"
xmlns:ns10="http://www.w3.0rg/2001/XMLSchema-instance"
ns10:schemalocation="http://www.opengis.net/csw
/ogc/csw/2.0.2/CSW-publication.xsd"
version="2.0.2">
<csw:TransactionSummary>
<csw:totallnserted>0</csw:totallnserted>
<csw:totalUpdated>1</csw:totalUpdated>
<csw:totalDeleted>0</csw:totalDeleted>
</csw:TransactionSummary>
</csw:TransactionResponse>

Table 42. Update Error Response Examples

Status Code Error Message Possible Causes

400 Bad Request ;OWS : EXEEDHO”TEX’DUHBME XML or CSW schema error. Verify input.
o update

record(s).</ows:ExceptionTe
xt>

200 OK <csw:totalUpdated>0</csw:to No records were updated. Verify metacard
tallpdated> id or search parameters.

13.6.2.4. CSW Endpoint Publication/Subscription Examples

The subscription GetRecords operation is very similar to the GetRecords operation used to search the
catalog but it subscribes to a search and sends events to a ResponseHandler endpoint as metacards are
ingested matching the GetRecords request used in the subscription. The ResponseHandler must use the
https protocol and receive a HEAD request to poll for availability and POST/PUT/DELETE requests for
creation, updates, and deletions. The response to a GetRecords request on the subscription url will be
an acknowledgement containing the original GetRecords request and a requestId. The client will be
assigned a requestId (URN).

A Subscription listens for events from federated sources if the DistributedSearch element is present
and the catalog is a member of a federation.

Adding a Subscription

224

Send a POST request to the CSW endpoint.

CSW Add Subscription Sample URL

https://<FQDN>:<PORT>/services/csw/subscription

Subscription GetRecords XML Request

<?xml version="1.0" 7>
<GetRecords xmlns="http://www.opengis.net/cat/csw/2.0.2"
xmlns:oge="http://www.opengis.net/ogc"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
service="CSW"
version="2.0.2"
maxRecords="4"
startPosition="1"
resultType="results"
outputFormat="application/xml"
outputSchema="http://www.opengis.net/cat/csw/2.0.2"
xsi:schemalocation="http://www.opengis.net/cat/csw/2.0.2 ../../../csw/2.0.2/CSW-
discovery.xsd">
<ResponseHandler>https://some.ddf/services/csw/subscription/event</ResponseHandler>
<Query typeNames="Record">
<ElementSetName>summary</ElementSetName>
<Constraint version="1.1.0">
<ogc:Filter>
<ogc:PropertyIsLike wildCard="%" singleChar=
<ogc:PropertyName>xml</ogc:PropertyName>
<ogc:Literal>%</ogc:Literal>
</ogc:PropertyIsLike>
</ogc:Filter>
</Constraint>
</Query>
</GetRecords>

escapeChar="\">

Updating a Subscription

To update an existing subscription, send a PUT request with the requestid URN appended to the url.

CSW Endpoint Subscription Update URL

https://{FQDN}:{PORT}/services/csw/subscription/urn:uuid:4d5a5249-be03-4fe8-afea-
6115021dd62f

225

Subscription GetRecords XML Response

<?xml version="1.0" 7>
<Acknowledgement timeStamp="2019-08-13718:49:45" xmlns=
"http://www.opengis.net/cat/csw/2.0.2"
xmlns:oge="http://www.opengis.net/ogc"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.opengis.net/cat/csw/2.0.2 ../../../csw/2.0.2/CSW-
discovery.xsd">
<EchoedRequest>
<GetRecords
requestId="urn:uuid:4d5a5249-be03-4fe8-afea-6115021dd62f"
service="CSW"
version="2.0.2"
maxRecords="4"
startPosition="1"
resultType="results"
outputFormat="application/xml"
outputSchema="urn:catalog:metacard">
<ResponseHandler>
https://some.ddf/services/csw/subscription/event</ResponseHandler>
<Query typeNames="Record">
<ElementSetName>summary</ElementSetName>
<Constraint version="1.1.0">
<ogc:Filter>
<ogc:PropertyIsLike wildCard="%" singleChar=
<ogc:PropertyName>xml</ogc:PropertyName>
<ogc:literal>%</ogc:Literal>
</ogc:PropertyIsLike>
</ogc:Filter>
</Constraint>
</Query>
</GetRecords>
</EchoedRequest>
<RequestId>urn:uuid:4d5a5249-be@3-4fe8-afea-6115021dd62f</ns:Requestld>
</Acknowledgement>

escapeChar="\">

226

Subscription GetRecords Event Sample Response

<csw:GetRecordsResponse version="2.0.2" xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:dct="http://purl.org/dc/terms/" xmlns:ows="http://www.opengis.net/ows" xmlns:xs=
"http://www.w3.0rg/2001/XMLSchema" xmlns:csw="http://www.opengis.net/cat/csw/2.0.2"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<csw:SearchStatus timestamp="2014-02-19T715:33:44.602-05:00"/>
<csw:SearchResults numberOfRecordsMatched="1" numberOfRecordsReturned="1" nextRecord
="5" recordSchema="http://www.opengis.net/cat/csw/2.0.2" elementSet="summary">
<csw:SummaryRecord>
<dc:identifier>f45415884c11409497e22db8303fe8cb</dc:identifier>
<dc:title>Product10</dc:title>
<dc:type>pdf</dc:type>
<dct:modified>2014-02-19715:22:51.563-05:00</dct:modified>
<ows:BoundingBox crs="urn:x-ogc:def:crs:EPSG:6.11:4326">
<ows:LowerCorner>20.0 10.0</ows:LowerCorner>
<ows:UpperCorner>20.0 10.0</ows:UpperCorner>
</ows:BoundingBox>
</csw:SummaryRecord>
</csw:SearchResults>
</csw:GetRecordsResponse>

Retrieving an Active Subscription

To retrieve an active subscription, send a GET request with the requestid URN appended to the url.

Retrieve.

https://<FQDN>:<PORT>/services/csw/subscription/urn:uuid:4d5a5249-be@3-4fe8-afea-
6115021dd62f

227

Subscription HTTP GET Sample Response

<?xml version="1.0" 7>
<Acknowledgement timeStamp="2019-08-13718:49:45" xmlns=
"http://www.opengis.net/cat/csw/2.0.2"
xmlns:oge="http://www.opengis.net/ogc"
xmlns:xsi=
"http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation=
"http://www.opengis.net/cat/csw/2.0.2 ../../../csw/2.0.2/CSW-discovery.xsd">
<EchoedRequest>
<GetRecords
requestId="urn:uuid:4d5a5249-be03-4fe8-afea-6115021dd62f"
service="CSW"
version="2.0.2"
maxRecords="4"
startPosition="1"
resultType="results"
outputFormat="application/xml"
outputSchema="urn:catalog:metacard">
<ResponseHandler>
https://some.ddf/services/csw/subscription/event</ResponseHandler>
<Query typeNames="Record">
<ElementSetName>summary</ElementSetName>
<Constraint version="1.1.0">
<ogc:Filter>
<ogc:PropertyIsLike wildCard="%" singleChar="_"
<ogc:PropertyName>xml</ogc:PropertyName>
<ogc:Literal>%</ogc:Literal>
</ogc:PropertyIsLike>
</ogc:Filter>
</Constraint>
</Query>
</GetRecords>
</EchoedRequest>
<RequestId>urn:uuid:4d5a5249-be@3-4fe8-afea-6115021dd62f</ns:Requestld>
</Acknowledgement>

escapeChar="\">

Deleting a Subscription

To delete a subscription, send a DELETE request with the requestid URN appended to the url.

Delete Subscription Sample URL

https://<FQDN>:<PORT>/services/csw/subscription/urn:uuid:4d5a5249-be@3-4fe8-afea-
6115021dd62 f

228

13.6.2.5. CSW Endpoint Delete Examples

To delete metacards via the CSW Endpoint, send a POST request with a csw:Delete to the CSW Endpoint
URL.

https://<FQDN>:<PORT>/services/csw

Define the records to delete with the csw:Constraint field. The constraint can be either an OGC or CQL
filter.

Sample XML Transaction Delete Request with OGC filter constraint

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<csw:Transaction service="CSW" version="2.0.2"
xmlns:csw="http://www.opengis.net/cat/csw/2.0.2"
xmlns:gml="http://www.opengis.net/gml"
xmlns:ogc="http://www.opengis.net/ogc">
<csw:Delete typeName="csw:Record" handle="something">
<csw:Constraint version="2.0.0">
<ogc:Filter>
<ogc:PropertyIstqualTo>
<ogc:PropertyName>id</ogc:PropertyName>
<ogc:Literal><METACARD-ID></ogc:Literal>
</ogc:PropertyIsEqualTo>
</ogc:Filter>
</csw:Constraint>
</csw:Delete>
</csw:Transaction>

Sample XML Transaction Delete Request with CQL filter constraint

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<csw:Transaction service="CSW" version="2.0.2"
xmlns:csw="http://www.opengis.net/cat/csw/2.0.2"
xmlns:gml="http://www.opengis.net/gml"
xmlns:ogc="http://www.opengis.net/ogc">
<csw:Delete typeName="csw:Record" handle="something">
<csw:Constraint version="2.0.0">
<ogc:CqlText>
"id" = '<METACARD-ID>'
</ogc:CqlText>
</csw:Constraint>
</csw:Delete>
</csw:Transaction>

229

Sample XML Transaction Delete Response

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<csw:TransactionResponse xmlns:ows="http://www.opengis.net/ows"
xmlns:ns2="http://www.w3.0rg/1999/x1ink"
xmlns:oge="http://www.opengis.net/ogc"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:dct="http://purl.org/dc/terms/"
xmlns:csw="http://www.opengis.net/cat/csw/2.0.2"
xmlns:gml="http://www.opengis.net/gml"
xmlns:ns8="http://www.w3.0rg/2001/SMIL20/"
xmlns:ns9="http://www.w3.0rqg/2001/SMIL20/Language"
xmlns:ns10="http://www.w3.0rg/2001/XMLSchema-instance"
version="2.0.2" ns10:schemalocation="http://www.opengis.net/csw
/ogc/csw/2.0.2/CSW-publication.xsd">
<csw:TransactionSummary>
<csw:totallnserted>0</csw:totallnserted>
<csw:totalUpdated>0</csw:totalUpdated>
<csw:totalDeleted>1</csw:totalDeleted>
</csw:TransactionSummary>
</csw:TransactionResponse>

Table 43. Delete Error Response Examples

Status Code Error Message Possible Causes

200 0K <csw:totalDeleted>0</csw:to No records matched filter criteria. Verify
talDeleted> metacard ID.

"400 Bad Request <ows:Exception> with details XML or CSW formatting error. Verify
of error. request.

13.6.2.6. CSW Endpoint Get Capabilities Examples

The GetCapabilities operation describes the operations the catalog supports and the URLs used to
access those operations. The CSW endpoint supports both HTTP GET and HTTP POST requests for the
GetCapabilities operation. The response to either request will always be a csw:Capabilities XML
document. This XML document is defined by the CSW-Discovery XML Schema .

CSW Endpoint Get(apabilities URL for GET request

https://<FQDN>:<PORT>/services/csw?service=CSW&version=2.0.2&request=GetCapabilities

Alternatively, send a POST request to the root CSW endpoint URL.

230

http://schemas.opengis.net/csw/2.0.2/CSW-discovery.xsd

CSW Endpoint Get(Capabilities URL for GET request

$https://<FQDN>:<PORT>/services/csw

Include an XML message body with a GetCapabilities element.

GetCapabilities Sample Request

<?xml version="1.0" 7>

<csw:GetCapabilities
xmlns:csw="http://www.opengis.net/cat/csw/2.0.2"
service="CSW"
version="2.0.2" >

</csw:GetCapabilities>

GetCapabilities Sample Response (application/xml)

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<csw:Capabilities xmlns:ows="http://www.opengis.net/ows" xmlns:ns2=
"http://www.w3.0rg/1999/x1ink" xmlns:ogc="http://www.opengis.net/ogc" xmlns:gml=
"http://www.opengis.net/gml" xmlns:csw="http://www.opengis.net/cat/csw/2.0.2" xmlns:nsb=
"http://www.w3.0rg/2001/SMIL20/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct=
"http://purl.org/dc/terms/" xmlns:ns9="http://www.w3.0rg/2001/SMIL20/Language”
xmlns:ns10="http://www.w3.0rg/2001/XMLSchema-instance" version="2.0.2"
ns10:schemalocation="http://www.opengis.net/csw /ogc/csw/2.0.2/CSW-publication.xsd">
<ows:Serviceldentification>
<ows:Title>Catalog Service for the Web</ows:Title>
<ows:Abstract>DDF CSW Endpoint</ows:Abstract>
<ows:ServiceType>CSW</ows:ServiceType>
<ows:ServiceTypeVersion>2.0.2</ows:ServiceTypeVersion>
</ows:Serviceldentification>
<ows:ServiceProvider>
<ows:ProviderName>DDF</ows:ProviderName>
<ows:ProviderSite/>
<ows:ServiceContact/>
</ows:ServiceProvider>
<ows:OperationsMetadata>
<ows:Operation name="GetCapabilities">
<ows:DCP>
<ows:HTTP>
<ows:Get ns2:href="https://<FQDN>:<PORT>/services/csw"/>
<ows:Post ns2:href="https://<FQDN>:<PORT>/services/csw">
<ows:Constraint name="PostEncoding">
<ows:Value>XML</ows:Value>
</ows:Constraint>
</ows:Post>
</ows:HTTP>

231

232

</ows:DCP>
<ows:Parameter name="sections">
<ows:Value>Serviceldentification</ows:Value>
<ows:Value>ServiceProvider</ows:Value>
<ows:Value>OperationsMetadata</ows:Value>
<ows:Value>Filter_Capabilities</ows:Value>
</ows:Parameter>
</ows:0Operation>
<ows:Operation name="DescribeRecord">
<ows:DCP>
<ows:HTTP>
<ows:Get ns2:href="https://<FQDN>:<PORT>/services/csw"/>
<ows:Post ns2:href="https://<FQDN>:<PORT>/services/csw">
<ows:Constraint name="PostEncoding">
<ows:Value>XML</ows:Value>
</ows:Constraint>
</ows:Post>
</ows:HTTP>
</ows:DCP>
<ows:Parameter name="typeName">
<ows:Value>csw:Record</ows:Value>
<ows:Value>gmd:MD_Metadata</ows:Value>
</ows:Parameter>
<ows:Parameter name="OutputFormat">
<ows:Value>application/xml</ows:Value>
<ows:Value>application/json</ows:Value>
<ows:Value>application/atom+xml</ows:Value>
<ows:Value>text/xml</ows:Value>
</ows:Parameter>
<ows:Parameter name="schemalanguage">
<ows:Value>http://www.w3.org/XMLSchema</ows:Value>
<ows:Value>http://www.w3.org/XML/Schema</ows:Value>
<ows:Value>http://www.w3.0rg/2001/XMLSchema</ows:Value>
<ows:Value>http://www.w3.org/TR/xmlschema-1/</ows:Value>
</ows:Parameter>
</ows:0Operation>
<ows:Operation name="GetRecords">
<ows:DCP>
<ows:HTTP>
<ows:Get ns2:href="https://<FQDN>:<PORT>/services/csw"/>
<ows:Post ns2:href="https://<FQDN>:<PORT>/services/csw">
<ows:Constraint name="PostEncoding">
<ows:Value>XML</ows:Value>
</ows:Constraint>
</ows:Post>
</ows:HTTP>
</ows:DCP>
<ows:Parameter name="ResultType">

<ows:Value>hits</ows:Value>
<ows:Value>results</ows:Value>
<ows:Value>validate</ows:Value>
</ows:Parameter>
<ows:Parameter name="OutputFormat">
<ows:Value>application/xml</ows:Value>
<ows:Value>application/json</ows:Value>
<ows:Value>application/atom+xml</ows:Value>
<ows:Value>text/xml</ows:Value>
</ows:Parameter>
<ows:Parameter name="OutputSchema">
<ows:Value>urn:catalog:metacard</ows:Value>
<ows:Value>http://www.isotc211.0rg/2005/gmd</ows:Value>
<ows:Value>http://www.opengis.net/cat/csw/2.0.2</ows:Value>
</ows:Parameter>
<ows:Parameter name="typeNames">
<ows:Value>csw:Record</ows:Value>
<ows:Value>gmd:MD_Metadata</ows:Value>
</ows:Parameter>
<ows:Parameter name="ConstraintlLanguage">
<ows:Value>Filter</ows:Value>
<ows:Value>CQL_Text</ows:Value>
</ows:Parameter>
<ows:Constraint name="FederatedCatalogs">
<ows:Value>Sourcel</ows:Value>
<ows:Value>Source2</ows:Value>
</ows:Constraint>
</ows:0Operation>
<ows:Operation name="GetRecordById">
<ows:DCP>
<ows:HTTP>
<ows:Get ns2:href="https://<FQDN>:<PORT>/services/csw"/>
<ows:Post ns2:href="https://<FQDN>:<PORT>/services/csw">
<ows:Constraint name="PostEncoding">
<ows:Value>XML</ows:Value>
</ows:Constraint>
</ows:Post>
</ows:HTTP>
</ows:DCP>
<ows:Parameter name="OutputSchema">
<ows:Value>urn:catalog:metacard</ows:Value>
<ows:Value>http://www.isotc211.0rg/2005/gmd</ows:Value>
<ows:Value>http://www.opengis.net/cat/csw/2.0.2</ows:Value>
<ows:Value>http://www.iana.org/assignments/media-types/application/octet-
stream</ows:Value>
</ows:Parameter>
<ows:Parameter name="OutputFormat">
<ows:Value>application/xml</ows:Value>

233

<ows:Value>application/json</ows:Value>
<ows:Value>application/atom+xml</ows:Value>
<ows:Value>text/xml</ows:Value>
<ows:Value>application/octet-stream</ows:Value>
</ows:Parameter>
<ows:Parameter name="ResultType">
<ows:Value>hits</ows:Value>
<ows:Value>results</ows:Value>
<ows:Value>validate</ows:Value>
</ows:Parameter>
<ows:Parameter name="ElementSetName">
<ows:Value>brief</ows:Value>
<ows:Value>summary</ows:Value>
<ows:Value>full</ows:Value>
</ows:Parameter>
</ows:0Operation>
<ows:Operation name="Transaction">
<ows:DCP>
<ows:HTTP>
<ows:Post ns2:href="https://<FQDN>:<PORT>/services/csw">
<ows:Constraint name="PostEncoding">
<ows:Value>XML</ows:Value>
</ows:Constraint>
</ows:Post>
</ows:HTTP>
</ows:DCP>
<ows:Parameter name="typeNames">
<ows:Value>xml</ows:Value>
<ows:Value>appxml</ows:Value>
<ows:Value>csw:Record</ows:Value>
<ows:Value>gmd:MD_Metadata</ows:Value>
<ows:Value>tika</ows:Value>
</ows:Parameter>
<ows:Parameter name="ConstraintLanguage">
<ows:Value>Filter</ows:Value>
<ows:Value>CQL_Text</ows:Value>
</ows:Parameter>
</ows:0Operation>
<ows:Parameter name="service">
<ows:Value>CSW</ows:Value>
</ows:Parameter>
<ows:Parameter name="version">
<ows:Value>2.0.2</ows:Value>
</ows:Parameter>
</ows:0OperationsMetadata>
<ogc:Filter_Capabilities>
<ogc:Spatial_Capabilities>
<ogc:GeometryOperands>

234

<ogc:GeometryOperand>gml:Point</ogc:GeometryOperand>
<ogc:GeometryOperand>gml:LineString</ogc:GeometryOperand>
<ogc:GeometryOperand>gml:Polygon</ogc:GeometryOperand>
</o0gc:GeometryOperands>
<ogc:SpatialOperators>
<ogc:SpatialOperator name="BBOX"/>
<ogc:SpatialOperator name="Beyond"/>
<ogc:SpatialOperator name="Contains"/>
<ogc:SpatialOperator name="Crosses"/>
<ogc:SpatialOperator name="Disjoint"/>
<ogc:SpatialOperator name="DWithin"/>
<ogc:SpatialOperator name="Intersects"/>
<ogc:SpatialOperator name="Overlaps"/>
<ogc:SpatialOperator name="Touches"/>
<ogc:SpatialOperator name="Within"/>
</ogc:SpatialOperators>
</ogc:Spatial_Capabilities>
<ogc:Scalar_Capabilities>
<ogc:LogicalOperators/>
<ogc:ComparisonOperators>
<ogc:ComparisonOperator>Between</ogc:ComparisonOperator>
<ogc:ComparisonOperator>NullCheck</ogc:ComparisonOperator>
<ogc:ComparisonOperator>Like</ogc:ComparisonOperator>
<ogc:ComparisonOperator>EqualTo</ogc:ComparisonOperator>
<ogc:ComparisonOperator>GreaterThan</ogc:ComparisonOperator>
<ogc:ComparisonOperator>GreaterThanEqualTo</ogc:ComparisonOperator>
<ogc:ComparisonOperator>LessThan</ogc:ComparisonOperator>
<ogc:ComparisonOperator>LessThanEqualTo</ogc:ComparisonOperator>
<ogc:ComparisonOperator>EqualTo</ogc:ComparisonOperator>
<ogc:ComparisonOperator>NotEqualTo</ogc:ComparisonOperator>
</ogc:ComparisonOperators>
</ogc:Scalar_Capabilities>
<ogc:Id_Capabilities>
<ogc:EID/>
</ogc:Id_Capabilities>
</ogc:Filter_Capabilities>
</csw:Capabilities>

13.6.3. FTP Endpoint

The FTP endpoint provides a method for ingesting files directly into the DDF catalog using the FTP
protocol.

The FTP endpoint can be accessed from any FTP client of choice. Some common clients are FileZilla,
PuTTY, or the FTP client provided in the terminal. The default port number is 8021. If FTPS is enabled
with 2-way TLS, a client that supports client authentication is required.

235

13.6.3.1. FTP Endpoint Create Examples

To ingest files into DDF send an FTP PUT request to the DDF server.

FTP Endpoint URL

ftp://<FQDN>:<PORT>

13.6.3.2. FTP Endpoint Rename Command

The FTP endpoint also supports renaming files as they are ingested with the FTP RNTO operation.

Files named with a leading ., such as .<FILENAME>, are held by DDF without being ingested until the
rename command is sent.

PUT Command Example

PUT .<FILENAME>.txt

Rename Command Example

rename .<NEW_FILENAME>.txt

The endpoint will complete the ingest process when the rename command is sent. The filename on the
original file system will NOT be changed.

13.6.4. OpenSearch Endpoint

The OpenSearch Endpoint enables a client to send query parameters and receive search results. This
endpoint uses the input query parameters to create an OpenSearch query. The client does not need to
specify all of the query parameters, only the query parameters of interest.

The OpenSearch specification defines a file format to describe an OpenSearch endpoint. This file is
XML-based and is used to programatically retrieve a site’s endpoint, as well as the different parameter
options a site holds. The parameters are defined via the OpenSearch ' and CDR IPT [Specifications.

13.6.4.1. OpenSearch Contextual Queries
To use the OpenSearch endpoint for a query, send a GET request with the query options as parameters

OpenSearch Query URL

https://<FQDN>:<PORT>/services/catalog/query?<NAME>="<VALUE>"

Table 44. OpenSearch Parameter List

236

http://www.opensearch.org/Specifications/OpenSearch/1.1
https://www.dni.gov/index.php/about/organization/chief-information-officer/cdr-search

OpenSearch Element HTTPS Parameter Possible Values Comments
searchTerms q URL-encoded, space- Complex contextual
delimited list of search search string.
terms
count count Integer >= 0 Maximum # of results to
retrieve.
default: 10
startIndex start integer > 0 Index of first result to
return.
This value uses a one-
based index for the
results.
default: 1
format format Requires a transformer Defines the format that

Sample OpenSearch Textual Query

shortname as a string,
possible values include,
when available, atom,
html, and km1.

See Query Response
transformers for more
possible values.

https://<FQDN>:<PORT>/services/catalog/query?q="Aliquam"&count=20

the return type should
be in.

default: atom

13.6.4.1.1. Complex OpenSearch Contextual Query Format

The OpenSearch Endpoint supports the following operators: AND, OR, and NOT. These operators are
case sensitive. Implicit ANDs are also supported.

Use parentheses to change the order of operations. Use quotes to group keywords into literal
expressions.

See the OpenSearch specification for more syntax specifics.

OpenSearch Endpoint Complex Query Example

https://<FQDN>:<PORT>/services/catalog/query?q="cat OR dog'

237

http://www.opensearch.org/Specifications/OpenSearch/1.1

13.6.4.2. OpenSearch Temporal Queries

Queries can also specify a start and end time to narrow results.

Table 45. OpenSearch Temporal Parameters

OpenSearch Element HTTPS Parameter Possible Values

start

end

dtstart RFC-3399-defined
value: YYYY-MM-

DDTHH:mm:ssZ " or
yyyy-MM-dd’T
'HH:mm:ss.SSSZZ

dtend RFC-3399-defined
value: YYYY-MM-

DDTHH:mm:ssZ" or
yyyy-MM-dd’T
‘HH:mm:ss.SSSZZ

OpenSearch Temporal Query Example

https://<FQDN>:<PORT>/services/catalog/query?q=""*"&dtstart=2019-08-

13700:00:007&dtend=2019-08-13T718:00:007

Comments

Specifies the beginning
of the time slice of the
search.

Default value of "1970-
01-01T00:00:00Z" is used
when dtend is specified
but dtstart is not
specified.

Specifies the ending of
the time slice of the
search

Current GMT date/time
is used when dtstart is
specified but dtend is not
specified.

The start and end temporal criteria must be of the format specified above. Other

formats are currently not supported. Example:

NOTE 2019-08-13712:00:00.111-04:00.

The start and end temporal elements are based on modified timestamps for a

metacard.

13.6.4.3. OpenSearch Geospatial Queries

Query by location.

Use

geospatial query parameters to create a geospatial INTERSECTS query, where
INTERSECTS means geometries that are not DISJOINT to the given geospatial parameters.

Table 46. Opensearch Geospatial Parameters

238

OpenSearch Element
lat

lon

radius

polygon

box

HTTPS Parameter
lat

lon

radius

polygon

bbox

Possible Values

EPSG:4326 (WGS84)
decimal degrees

EPSG:4326 (WGS84)
decimal degrees

EPSG:4326 (WGS84)
meters along the Earth’s
surface > 0

Comma-delimited list of
lat/lon (EPSG:4326
(WGS84) decimal
degrees) pairs, in
clockwise order around
the polygon, where the
last point is the same as
the first in order to close

the polygon. (e.g. -80,
-170,0,-170,80,
-170,80,170,0,170,

-80,170,-80,-170)

4 comma-delimited
EPSG:4326 (WGS84)
decimal degrees
coordinates in the
format
West,South,East,North

Comments

Used in conjunction
with the lon and radius
parameters.

Used in conjunction
with the lat and radius
parameters.

Specifies the search
distance in meters from
the lon,lat point.

Used in conjunction
with the 1at and lon
parameters.

default: 5000

According to the
OpenSearch Geo
Specification this is
deprecated. Use the
geometry parameter
instead.

239

OpenSearch Element HTTPS Parameter

geometry geometry

OpenSearch GeoSpatial Query Example

Possible Values

WKT Geometries
Examples:

POINT(10 20) where 10 is
the longitude and 20 is
the latitude.

POLYGON ((30 10, 10
20, 20 40, 40 40, 30 10
)).30islongitude and
10 is latitude for the first
point.

MULTIPOLYGON (40 40,
20 45, 45 30, 40 40,
20 35, 10 30, 10 10,
30 5, 45 20, 20 35),
(30 20, 20 15, 20 25,

30 20)

GEOMETRYCOLLECTION(POIN
T(4 6),LINESTRING(4 6,7
10))

Comments

Make sure to repeat the
starting point as the last
point to close the

polygon.

https://localhost:8993/services/catalog/query?q="*"&lon=44.792&1at=-6.171

13.6.4.4. Additional OpenSearch Query Parameters

The OpenSearch Endpoint can also use these additional parameters to refine queries

Table 47. OpenSearch Query Extensions
HTTPS Parameter

sort sort

OpenSearch Element

240

Possible Values

<sbfield>:<sborder>

where

<sbfield> is date or
relevance

<sborder> is asc or desc

Comments

<sborder> is optional but
has a value of asc or
desc (default is desc).
However, when
<sbfield> is relevance,
<sborder> must be desc.

Sorting by date will sort
the results by the

effective date.

default: relevance:desc

OpenSearch Element

maxResults

maxTimeout

dateOffset

type

version

selector

Table 48. Federated Search

OpenSearch Element

routeTo

HTTPS Parameter

mr

mt

dtoffset

type

version

selector

HTTPS Parameter

src

13.6.5. Queries Endpoint

Possible Values

Integer >=0

Integer > 0

Integer > 0

Any valid datatype (e.g.
Text)

Comma-delimited list of
strings (e.g. 20,30)

Comma-delimited list of
XPath string selectors
(e.g.
//namespace:example,
//[example)

Possible Values

Comma-delimited list of
site names to query.
Varies depending on the
names of the sites in the
federation. local
specifies to query the
local site.

Comments

Maximum # of results to
return.

If count is also specified,
the count value will take
precedence over the
maxResults value.

default: 1000

Maximum timeout
(milliseconds) for query
to respond.

default: 300000 (5
minutes)

Specifies an offset
(milliseconds),
backwards from the
current time, to search
on the modified time
field for entries.

Specifies the type of
data to search for.

Version values for
which to search.

Selectors to narrow the
query.

Comments

If src is not provided,
the default behavior is
to execute an enterprise
search to the entire
federation.

The queries endpoint enables an application to create, retrieve, update, and delete query metacards.

241

Query metacards represent queries within the Ul. A query metacard is what is persisted in the data
store.

The queries endpoint can be used for one or more of these operations on an instance of DDF:

* Create query metacards and store them in the DDF catalog.

* Retrieve all query metacards stored in the DDF catalog and sort them based on attribute and sort
order.

* Retrieve a specific query metacard stored in the DDF catalog.

Update query metacards that are stored in the DDF catalog.

* Delete query metacards that are stored in the DDF catalog.

Queries Endpoint URL

https://<HOSTNAME>:<PORT>/search/catalog/internal/queries

13.6.5.1. Queries Endpoint Create Examples

To create a query metacard through the queries endpoint, send a POST request to the queries endpoint.

Queries Endpoint Create Request Body

{
"cql":"(\"anyText\" ILIKE 'foo bar')",
"filterTree":"{\"type\":\"AND\" \"filters\":[{\"type\":\"ILIKE\",\"property\":
\"anyText\",\"value\":\"foo bar\"}]}",
"federation":"enterprise",
"sorts":[
{
"attribute":"modified",
"direction":"descending"

}
]I

"type":"advanced",
"title":"Search Title"

A successful create request will return a status of 201 CREATED.

242

Queries Endpoint Create Success Response Body

{
"id": "12bfc601cdad49d58733eacaf613b93d",
"title": "Search Title",
"created": "Apr 18, 2019 10:20:55 AM",
"modified": "Apr 18, 2019 10:20:55 AM",
"owner": "admin@localhost.local",
"cql": "(\"anyText\" ILIKE 'foo bar')",

"filterTree": "{\"type\":\"AND\" \"filters\":[{\"type\":\"ILIKE\",\"property\":

\"anyText\",\"value\":\"foo bar\"}]}",
"enterprise": null,
"sources": [],
"sorts": [
{
"attribute": "modified",
“direction": "descending"
}
Il
"polling": null,
"federation": "enterprise",
"type": "advanced",
"detaillevel": null,
"schedules": [],
"facets": []

An unsuccessful create request will return a status of 560 SERVER ERROR.

Queries Endpoint Create Failure Response Body

{

"message": "Something went wrong."

}

13.6.5.2. Queries Endpoint Retrieve All Examples

To retrieve a query metacard through the queries endpoint, send a GET request to the queries endpoint.

Table 49. Path Parameters

Query Param Description Default Value Valid Values
start The starting index 1 Integer

of the query to

receive.
count The number of 100 Integer

queries to return.

All integers

Query Param Description Default Value Valid Values Type

attr The attribute to modified A1l strings String
sort the queries

by.

sort_by The sort order to desc asc, desc String
return the queries
in.

text A text field to None A1l strings String

search against a
few attributes.

A successful retrieval request will return a status of 200 0K.

13.6.5.3. Queries Endpoint Retrieve All Fuzzy Examples

To retrieve all query metacards based on some text based value through the queries endpoint, send a
GET request to the queries endpoint specifying a value for text as a query parameters.

Retrieve All Queries Fuzzy Search Endpoint URL

https://<HOSTNAME>:<PORT>/search/catalog/internal/queries?text=<VALUE>

A fuzzy search will only be performed against the title, modified, owner, and description attributes.

13.6.5.4. Queries Endpoint Retrieve Examples

Retrieve Specific Query Endpoint URL

https://<HOSTNAME>:<PORT>/search/catalog/internal/queries/<ID>

To retrieve a specific query metacard through the queries endpoint, send a GET request to the queries
endpoint with an id.

A successful retrieval request will return a status of 200 0K.

Query Endpoint Not Found Response Body

"message": "Could not find metacard for id: <metacardId>"

An unsuccessful retrieval request will return a status of 464 NOT FOUND.

13.6.5.5. Queries Endpoint Update Examples

244

Update Query Endpoint URL

https://<HOSTNAME>:<PORT>/search/catalog/internal/queries/<ID>

To update a specific query metacard through the queries endpoint, send a PUT request to the queries
endpoint with an id.

Update Query Request Request Body

{
"Cq"_":"(\"anyTeXt\" ILIKE lfoo barl)lll
"filterTree":"{\"type\":\"AND\",\"filters\":[{\"type\":\"ILIKE\",\"property\":
\"anyText\",\"value\":\"foo bar\"}]}",
"federation":"enterprise",
"sorts":[

{

"attribute":"modified",
"direction":"descending'

}
]I

"type":"advanced",
"title":"New Search Title"

A successful update request will return a status of 200 0OK.

245

Update Query Request Response Body

{
"id": "cdb6b83db301544e4bb7ece39564261ca",
"title": "New Search Title",
"created": "Apr 18, 2019 11:09:35 AM",
"modified": "Apr 18, 2019 11:09:35 AM",
"owner": null,
"cql": "(\"anyText\" ILIKE 'foo barararra')",
"filterTree": "{\"type\":\"AND\" \"filters\":[{\"type\":\"ILIKE\",\"property\":
\"anyText\",\"value\":\"foo bar\"}]}",
"enterprise": null,
"sources": [],
"sorts": [
{
"attribute": "modified",
“direction": "descending"
}
I
"polling": null,
"federation": "enterprise",
"type": "advanced",
"detaillevel": null,
"schedules": [],
"facets": []

An unsuccessful update request will return a status of 404 NOT FOUND.

Update Query Unsuccessful Response Body

{

"message": "Form is either restricted or not found."

}

13.6.5.6. Queries Endpoint Delete Examples

Delete Query Endpoint URL

https://<HOSTNAME>:<PORT>/search/catalog/internal/queries/<ID>

To delete a specific query metacard through the queries endpoint, send a GET request to the queries
endpoint with an id.

A successful deletion request will return a status of 264 NO CONTENT.

246

An unsuccessful deletion request will return a status of 404 NOT FOUND.

Delete Query Not Found Response Body

"message": "Form is either restricted or not found."

Developing

Developers will build or extend the functionality of the applications.

DDF includes several extension points where external developers can add functionality to support

individual use cases.

DDF is written in Java and uses many open source libraries. DDF uses OSGi to provide modularity,
lifecycle management, and dynamic services. OSGi services can be installed and uninstalled while DDF
is running. DDF development typically means developing new OSGi bundles and deploying them to the
running DDF. A complete description of OSGi is outside the scope of this documentation. For more
information about OSGi, see the OSGi Alliance website .

Components

JVM
Qperating System

Hardware

New Security]

New New
Catalog Components Components App Components

I
{ DDF Catalog] [DDF Security] , { New Application]
i

includes Apache Karaf, Apache CXF,

I
DDF Framework |
I
I
Eclipse Equinox OSGi Container |

I

[Sun Java JDK }

(Windows J(Linux J(Mac 05 X)

Architecture Diagram

IMPORTANT

If developing for a Highly Available Cluster of DDF, see High Availability
Guidance.

14. Catalog Framework API

247

http://www.osgi.org

[Endpoints]
Operations Data o
“«o T
Transformers Federation Sources | External
Catalog Framework r Data |
‘ Eventing ‘ | Holdings |
Catalog 4 :
Plugins ‘ Resources J e _-
Catalog Provider
Storage Provider
¢ Legend
[‘-'—__—__ ________________ - __‘___—"|
I | [DDF Component]
| Data Store |
I L ittt e b L Ll L L v
e - _-- ! External Component '
Catalog Architecture
Endpoints
Operations Data
Transformers Federation Sources
Catalog Framework
Eventing
Catalog
Plugins Resources
Catalog Provider
Storage Provider

Catalog Framework Architecture

The CatalogFramework is the routing mechanism between catalog components that provides integration
points for the Catalog Plugins. An endpoint invokes the active Catalog Framework, which calls any

248

configured Pre-query or Pre-ingest plug-ins. The selected federation strategy calls the active Catalog
Provider and any connected or federated sources. Then, any Post-query or Post-ingest plug-ins are
invoked. Finally, the appropriate response is returned to the calling endpoint.

The Catalog Framework wires all Catalog components together.
It is responsible for routing Catalog requests and responses to the appropriate target.

Endpoints send Catalog requests to the Catalog Framework. The Catalog Framework then
invokes Catalog Plugins, Transformers, and Resource Components as needed before sending requests
to the intended destination, such as one or more Sources.

The Catalog Framework decouples clients from service implementations and provides integration
points for Catalog Plugins and convenience methods for Endpoint developers.

14.1. Catalog API Design

The Catalog is composed of several components and an API that connects them together. The Catalog
API is central to DDF’s architectural qualities of extensibility and flexibility. The Catalog API consists of
Java interfaces that define Catalog functionality and specify interactions between components. These
interfaces provide the ability for components to interact without a dependency on a particular
underlying implementation, thus allowing the possibility of alternate implementations that can
maintain interoperability and share developed components. As such, new capabilities can be
developed independently, in a modular fashion, using the Catalog APIinterfaces and reused by
other DDF installations.

14.1.1. Ensuring Compatibility

The Catalog API will evolve, but great care is taken to retain backwards compatibility with developed
components. Compatibility is reflected in version numbers.

14.1.2. Catalog Framework Sequence Diagrams

Because the Catalog Framework plays a central role to Catalog functionality, it interacts with many
different Catalog components. To illustrate these relationships, high-level sequence diagrams with
notional class names are provided below. These examples are for illustrative purposes only and do not
necessarily represent every step in each procedure.

249

Web Service Ingest Request

Client Endpoint CatalogFramework CatalogProvider External
Ingest Service Endpoint Standard Catalog Framework PreingestPlugin PostingestPlugin Solr Provider Solr Search Server
'
'
: 5] :]] :
1 1 | | |
i i !

'} create(CreateRequest) |
| » | process(CreateRequest) N
I

Ll

CreateRequest

I
! N create(CreateRequest)

I
P | create
i

I
|

response
I

I
[

1‘ process(CreateResponse)
i '

|
>
! CreateRespon se !

I

I
CreateR :4

Soge====

o Web Servicg Ingest R
4

Ingest Request Data Flow

The Ingest Service Endpoint, the Catalog Framework, and the Catalog Provider are key components of
the Reference Implementation. The Endpoint bundle implements a Web service that allows clients to
create, update, and delete metacards. The Endpoint calls the CatalogFramework to execute the operations
of its specification. The C(atalogFramework routes the request through optional Prelngest and
PostIngest Catalog Plugins, which may modify the ingest request/response before/after the Catalog
Provider executes the ingest request and provides the response. Note that a CatalogProvider must be
present for any ingest requests to be successfully processed, otherwise a fault is returned.

This process is similar for wupdating catalog entries, with update requests calling the
update(UpdateRequest) methods on the Endpoint, CatalogFramework, and Catalog Provider. Similarly, for
deletion of catalog entries, the delete requests call the delete(DeleteRequest) methods on the Endpoint,
CatalogFramework, and CatalogProvider.

14.1.2.1. Error Handling

Any ingest attempts that fail inside the Catalog Framework (whether the failure comes from the
Catalog Framework itself, pre-ingest plugin failures, or issues with the Catalog Provider) will be logged
to a separate log file for ease of error handling. The file is located at
<DDF_HOME>/data/log/ingest_error.log and will log the Metacards that fail, their ID and Title name, and
the stack trace associated with their failure. By default, successful ingest attempts are not logged.
However, that functionality can be achieved by setting the log level of the ingestLogger to DEBUG (note
that enabling DEBUG can cause a non-trivial performance hit).

To turn off logging failed ingest attempts into a separate file, execute the following via the
command line console

TIP
log:set
ERROR ingestlLogger

14.1.2.2. Query

250

i Web Service|Query Request
1

Client Endpoint CatalogFramework CatalogProvider External
Query Service Endpoint Standard Catalog Framework PreQueryPlugin PostQueryPlugin Solr Provider Solr Search Server
i | i | |
i ' | i
i i
i i

4 | query(QueryRequest)
i

» i process(QueryRequest)
I

L]

QueryRequest

! N create(QueryRequest)

» | query
i

|
response
| | P

process(QueryResponse) N

' QueryResponse i

QueryResp

, Web Servicp Query R 1<
4

T

Query Request Data Flow

The Query Service Endpoint, the Catalog Framework, and the CatalogProvider are key components for
processing a query request as well. The Endpoint bundle contains a Web service that exposes the
interface to query for Metacards. The Endpoint calls the CatalogFramework to execute the operations of
its specification. The CatalogFramework relies on the CatalogProvider to execute the actual query.
Optional PreQuery and PostQuery Catalog Plugins may be invoked by the CatalogFramework to modify
the query request/response prior to the Catalog Provider processing the query request and providing
the query response. If a CatalogProvider is not configured and no other remote Sources are configured,
a fault will be returned. It is possible to have only remote Sources configured and no local
CatalogProvider configured and be able to execute queries to specific remote Sources by specifying the
site name(s) in the query request.

14.1.2.3. Product Retrieval

The Query Service Endpoint, the Catalog Framework, and the CatalogProvider are key components for
processing a retrieve product request. The Endpoint bundle contains a Web service that exposes the
interface to retrieve products, also referred to as Resources. The Endpoint calls the CatalogFramework to
execute the operations of its specification. The CatalogFramework relies on the Sources to execute the
actual product retrieval. Optional PreResource and PostResource Catalog Plugins may be invoked by
the CatalogFramework to modify the product retrieval request/response prior to the Catalog
Provider processing the request and providing the response. It is possible to retrieve products
from specific remote Sources by specifying the site name(s) in the request.

14.1.2.4. Product Caching

The Catalog Framework optionally provides caching of products, so future requests to retrieve the
same product will be serviced much quicker. If caching is enabled, each time a retrieve product
request is received, the Catalog Framework will look in its cache (default location
<DDF_HOME>/data/product-cache) to see if the product has been cached locally. If it has, the product is
retrieved from the local site and returned to the client, providing a much quicker turnaround because
remote product retrieval and network traffic was avoided. If the requested product is not in the cache,
the product is retrieved from the Source (local or remote) and cached locally while returning the
product to the client. The caching to a local file of the product and the streaming of the product to the
client are done simultaneously so that the client does not have to wait for the caching to complete
before receiving the product. If errors are detected during the caching, caching of the product will be

251

abandoned, and the product will be returned to the client.

The Catalog Framework attempts to detect any network problems during the product retrieval, e.g.,
long pauses where no bytes are read implying a network connection was dropped. (The amount of
time defined as a "long pause" is configurable, with the default value being five seconds.) The Catalog
Framework will attempt to retrieve the product up to a configurable number of times (default = three),
waiting for a configurable amount of time (default = 10 seconds) between each attempt, trying to
successfully retrieve the product. If the Catalog Framework is unable to retrieve the product, an error
message is returned to the client.

If the admin has enabled the Always Cache When Canceled option, caching of the product will occur
even if the client cancels the product retrieval so that future requests will be serviced quickly.
Otherwise, caching is canceled if the user cancels the product download.

14.1.2.5. Product Download Status

As part of the caching of products, the Catalog Framework also posts events to the OSGi notification
framework. Information includes when the product download started, whether the download is
retrying or failed (after the number of retrieval attempts configured for product caching has been
exhausted), and when the download completes. These events are retrieved by the Search UI and
presented to the user who initiated the download.

14.1.3. Catalog API

The Catalog API is an OSGi bundle (catalog-core-api) that contains the Java interfaces for
the Catalog components and implementation classes for the Catalog Framework, Operations,
and Data components.

14.1.3.1. Catalog API Search Interfaces

The Catalog API includes two different search interfaces.

Search UI Application Search Interface

The DDF Search UI application provides a graphic interface to return results and locate them on an
interactive globe or map.

SSH Search Interface

Additionally, it is possible to use a client script to remotely access DDF via SSH and send console
commands to search and ingest data.

14.1.3.2. Catalog Search Result Objects

Data is returned from searches as Catalog Search Result objects. This is a subtype of Catalog Entry that
also contains additional data based on what type of sort policy was applied to the search. Because it is
a subtype of Catalog Entry, a Catalog Search Result has all Catalog Entry’s fields such as metadata,
effective time, and modified time. It also contains some of the following fields, depending on type of

252

search, that are populated by DDF when the search occurs:

Distance

Populated when a point-radius spatial search occurs. Numerical value that indicates the result’s
distance from the center point of the search.

Units

Populated when a point-radius spatial search occurs. Indicates the units (kilometer, mile, etc.) for
the distance field.

Relevance

Populated when a contextual search occurs. Numerical value that indicates how relevant the text in
the result is to the text originally searched for.

14.1.3.3. Search Programmatic Flow

Searching the catalog involves three basic steps:

1. Define the search criteria (contextual, spatial, or temporal).
a. Optionally define a sort policy and assign it to the criteria.

b. For contextual search, optionally set the fuzzy flag to true or false (the default value for the
Metadata Catalog fuzzy flag is true, while the portal default value is false).

c. For contextual search, optionally set the caseSensitive flag to true (the default is that
caseSensitive flag is NOT set and queries are not case sensitive). Doing so enables case sensitive
matching on the search criteria. For example, if caseSensitive is set to true and the phrase is
“Baghdad” then only metadata containing “Baghdad” with the same matching case will be
returned. Words such as “baghdad”, “BAGHDAD”, and “baghDad” will not be returned because
they do not match the exact case of the search term.

2. Issue a search.

3. Examine the results.

14.1.3.4. Sort Policies

Searches can also be sorted according to various built-in policies. A sort policy is applied to the search
criteria after its creation but before the search is issued. The policy specifies to the DDF the order the
Catalog search results should be in when they are returned to the requesting client. Only one sort
policy may be defined per search.

There are three policies available.

Table 50. Sort Policies

253

Sort Policy Sorts By Default Order Available for

Temporal The catalog search Newest to oldest All Search Types
result’s effective time
field

Distance The catalog search Nearest to farthest Point-Radius Spatial
result’s distance field searches

Relevance The catalog search Most to least relevant Contextual

result’s relevance field

If no sort policy is defined for a particular search, the temporal policy will automatically be applied.

14.1.3.5. Product Retrieval

The DDF is used to catalog resources. A Resource is a URI-addressable entity that is represented by a
Metacard. Resources may also be known as products or data. Resources may exist either locally or on a
remote data store.

Examples of Resources
* NITF image
* MPEG video
* Live video stream
* Audio recording

¢ Document

Product Retrieval Services

* SOAP Web services
« DDF JSON
e DDF REST

The Query Service Endpoint, the Catalog Framework, and the CatalogProvider are key components for
processing a retrieve product request. The Endpoint bundle contains a Web service that exposes the
interface to retrieve products, also referred to as Resources. The Endpoint calls the CatalogFramework to
execute the operations of its specification. The CatalogFramework relies on the Sources to execute the
actual product retrieval. Optional PreResource and PostResource Catalog Plugins may be invoked by
the CatalogFramework to modify the product retrieval request/response prior to the Catalog Provider
processing the request and providing the response. It is possible to retrieve products from specific
remote Sources by specifying the site name(s) in the request.

254

Product Caching

Existing DDF clients are able to leverage product caching due to the product cache
NOTE being implemented in the DDF. Enabling the product cache is an administrator
function.

Product Caching is enabled by default.

To configure product caching:

1. Navigate to the Admin Console.
2. Select Catalog.
3. Select Configuration.

4. Select Resource Download Settings.

See Resource Download Settings configurations for all possible configurations.

| Service Retrieval
| Request
'

Client Endpoint CatalogFramework DownloadManager Cache External
Service Endpoint Standard Catalog Framework PreResourcePlugin PostResourcePlugin Download Manager Cache Resource Host
I | I I . | .
i I i i I I I
»! I i i I I i
I i I i '
I i I i '

" | query(ResourceRequest)

ResourceRequest

0 getResource
I

v

I i
I i
! I —_—
! resource ! |
&

<

I —
| resource I
e
i resource i i
i< |
| process(ResourceResponse) |
i

ResourceResponse

|
! Web Service 1 ResourceResponse |
eval I+ !

Product Retrieval Request
14.1.3.6. Notifications and Activities
DDF can send/receive notifications of "Activities" occuring in the system.

14.1.3.6.1. Notifications

Currently, the notifications provide information about product retrieval only.

14.1.3.6.2. Activities

Activity events include the status and progress of actions that are being performed by the user, such as
searches and downloads.

14.2. Included Catalog Frameworks, Associated
Components, and Configurations

These catalog frameworks are available in a standard DDF installation:

255

Standard Catalog Framework

Reference implementation of a Catalog Framework that implements all requirements of the Catalog
API.

Catalog Framework Camel Component

Supports creating, updating, and deleting metacards using the Catalog Framework from a Camel
route.

14.2.1. Standard Catalog Framework

The Standard Catalog Framework provides the reference implementation of a Catalog Framework that
implements all requirements of the Catalog API. CatalogFrameworkImplis the implementation of
the DDF Standard Catalog Framework.

The Standard Catalog Framework is the core class of DDF. It provides the methods for create, update,
delete, and resource retrieval (CRUD) operations on the Sources. By contrast, the Fanout Catalog
Framework only allows for query and resource retrieval operations, no catalog modifications, and all
queries are enterprise-wide.

Use this framework if:

* access to a catalog provider is required to create, update, and delete catalog entries.
* queries to specific sites are required.
* queries to only the local provider are required.

It is possible to have only remote Sources configured with no local CatalogProvider configured and be
able to execute queries to specific remote sources by specifying the site name(s) in the query request.

The Standard Catalog Framework also maintains a list of ResourceReaders for resource retrieval
operations. A resource reader is matched to the scheme (i.e., protocol, such as file://) in the URI of the
resource specified in the request to be retrieved.

Site information about the catalog provider and/or any federated source(s) can be retrieved using the
Standard Catalog Framework. Site information includes the source’s name, version, availability, and
the list of unique content types currently stored in the source (e.g., NITF). If no local catalog provider is
configured, the site information returned includes site info for the catalog framework with no content
types included.

14.2.1.1. Installing the Standard Catalog Framework

The Standard Catalog Framework is bundled as the catalog-core-standardframework feature and can be
installed and uninstalled using the normal processes described in Configuration.

14.2.1.2. Configuring the Standard Catalog Framework

These are the configurable properties on the Standard Catalog Framework.

256

See Catalog Standard Framework configurations for all possible configurations.

Table 51. Standard Catalog Framework Exported Services

Registered Interface Service Value
Property

ddf.catalog.federation.FederationStrategy shortname sorted

org.osgi.service.event.EventHandler event.topics

ddf.catalog.CatalogFramework
ddf.catalog.event.EventProcessor
ddf.catalog.plugin.PostIngestPlugin

Table 52. Standard Catalog Framwork Imported Services
Registered Interface
ddf.catalog.plugin.PostFederatedQueryPlugin
ddf.catalog.plugin.PostIngestPlugin
ddf.catalog.plugin.PostQueryPlugin
ddf.catalog.plugin.PostResourcePlugin
ddf.catalog.plugin.PreDeliveryPlugin
ddf.catalog.plugin.PreFederatedQueryPlugin
ddf.catalog.plugin.PrelngestPlugin
ddf.catalog.plugin.PreQueryPlugin
ddf.catalog.plugin.PreResourcePlugin
ddf.catalog.plugin.PreSubscriptionPlugin
ddf.catalog.plugin.PolicyPlugin
ddf.catalog.plugin.AccessPlugin
ddf.catalog.resource.ResourceReader
ddf.catalog.source.CatalogProvider
ddf.catalog.source.ConnectedSource
ddf.catalog.source.FederatedSource
ddf.cache.CacheManager

org.osgi.service.event.EventAdmin

14.2.1.3. Known Issues with Standard Catalog Framework

None.

Availability
optional
optional
optional
optional
optional
optional
optional
optional
optional
optional
optional
optional
optional
optional
optional

optional

ddf/catalog/event/CREATED,
ddf/catalog/event/UPDATED,
ddf/catalog/event/DELETED

Multiple

true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
false

false

257

14.2.2. Catalog Framework Camel Component

The Catalog Framework Camel Component supports creating, updating, and deleting metacards using
the Catalog Framework from a Camel route.

URI Format

catalog: framework

14.2.2.1. Message Headers
14.2.2.1.1. Catalog Framework Producer

Header Description

operation the operation to perform using the Catalog Framework (possible values are CREATE
| UPDATE | DELETE)

14.2.2.2. Sending Messages to Catalog Framework Endpoint

14.2.2.2.1. Catalog Framework Producer

In Producer mode, the component provides the ability to provide different inputs and have the Catalog
framework perform different operations based upon the header values.

For the CREATE and UPDATE operation, the message body can contain a list of metacards or a single
metacard object.

For the DELETE operation, the message body can contain a list of strings or a single string object. The
string objects represent the IDs of metacards to be deleted. The exchange’s "in" message will be set
with the affected metacards. In the case of a CREATE, it will be updated with the created metacards. In
the case of the UPDATE, it will be updated with the updated metacards and with the DELETE it will
contain the deleted metacards.

Table 53. Catalog Framework Camel Component Operations

Header Message Body (Input) Exchange Modification (Output)

operation = CREATE List<Metacard> or Metacard exchange.getIn().getBody() updated with
List of Metacards created

operation = UPDATE List<Metacard> or Metacard exchange.getIn().getBody() updated with
List of Metacards updated

operation = DELETE List<String> or String exchange.getIn().getBody() updated with
(representing metacard IDs) List of Metacards deleted

258

If there is an exception thrown while the route is being executed,

a

NOTE FrameworkProducerException will be thrown causing the route to fail with a

CamelExecutionException.

14.2.2.2.2. Samples

This example demonstrates:

1. Reading in some sample data from the file system.

2. Using a Java bean to convert the data into a metacard.

3. Setting a header value on the Exchange.

4. Sending the Metacard to the Catalog Framework component for ingesting.

<route>
<from uri="file:data/sampleData?noop=true”/>

<bean ref="sampleDataToMetacardConverter" method="covertToMetacard"/>\

<setHeader headerName="operation">
<constant>CREATE</constant>
</setHeader>
<to uri="catalog:framework"/>
</route>

15. Transformers

Endpoints
Operations Data
Federation Sources
Catalog Framework
Eventing
Catalog
Plugins Resources
Catalog Provider
Storage Provider
Transformers

259

Transformers transform data to and from various formats. Transformers are categorized by when they
are invoked and used. The existing types are Input transformers, Metacard transformers, and Query
Response transformers. Additionally, XSLT transformers are provided to aid in developing custom,
lightweight Metacard and Query Response transformers.

Transformers are utility objects used to transform a set of standard DDF components into a desired
format, such as into PDF, GeoJSON, XML, or any other format. For instance, a transformer can be used
to convert a set of query results into an easy-to-read GeoJSON format (GeoJSON Transformer) or
convert a set of results into a RSS feed that can be easily published to a URL for RSS feed subscription.
Transformers can be registered in the OSGi Service Registry so that any other developer can access
them based on their standard interface and self-assigned identifier, referred to as its "shortname."
Transformers are often used by endpoints for data conversion in a system standard way. Multiple
endpoints can use the same transformer, a different transformer, or their own published transformer.

The current transformers only work for UTF-8 characters and do not support Non-

WARNING Western Characters (for example, Hebrew). It is recommend not to use
international character sets, as they may not be displayed properly.

@

%

DDF+

H[Catalog Framework

[Transformer]

il

Communication Diagram

Transformers are used to alter the format of a resource or its metadata to or from the catalog’s
metacard format.

Types of Transformers
Input Transformers

Input Transformers create metacards from input. Once converted to a Metacard, the data can be
used in a variety of ways, such as in an UpdateRequest, CreateResponse, or within Catalog Endpoints
or Sources. For instance, an input transformer could be used to receive and translate XML into a

260

Metacard so that it can be placed within a CreateRequest to be ingested within the Catalog. Input
transformers should be registered within the Service Registry with the interface
ddf.catalog.transform.InputTransformer to notify Catalog components of any new transformers.

Metacard Transformers

Metacard Transformers translate a metacard from catalog metadata to a specific data format.

Query Response Transformers

Query Response transformers convert query responses into other data formats.

15.1. Available Input Transformers

The following input transformers are available in a standard installation of DDF:

GeoJSON Input Transformer

Translates GeoJSON into a Catalog metacard.

PDF Input Transformer

Translates a PDF document into a Catalog Metacard.

PPTX Input Transformer

Translates Microsoft PowerPoint (OOXML only) documents into Catalog Metacards.

Registry Transformer

Creates Registry metacards from ebrim messages and translates a Registry metacard. (used by the
Registry application)

Tika Input Transformer

Translates Microsoft Word, Microsoft Excel, Microsoft PowerPoint, OpenOffice Writer, and PDF
documents into Catalog records.

Video Input Transformer

Creates Catalog metacards from certain video file types.

XML Input Transformer

Translates an XML document into a Catalog Metacard.

15.2. Available Metacard Transformers

The following metacard transformers are available in a standard installation of DDF:

GeoJSON Metacard Transformer

Translates a metacard into GeoJSON.

261

KML Metacard Transformer

Translates a metacard into a KML-formatted document.

KML Style Mapper
Maps a KML Style URL to a metacard based on that metacard’s attributes.

Metadata Metacard Transformer

returns the Metacard.METADATA attribute when given a metacard.

Registry Transformer

Creates Registry metacards from ebrim messages and translates a Registry metacard. (used by the
Registry application)

Resource Metacard Transformer

Retrieves the resource bytes of a metacard by returning the product associated with the metacard.

Thumbnail Metacard Transformer

Retrieves the thumbnail bytes of a Metacard by returning the Metacard. THUMBNAIL attribute value.

XML Metacard Transformer

Translates a metacard into an XML-formatted document.

15.3. Available Query Response Transformers
The following query response transformers are available in a standard installation of DDF:

Atom Query Response Transformer

Transforms a query response into an Atom 1.0 feed.

CSW Query Response Transformer

Transforms a query response into a CSW-formatted document.

GeoJSON Query Response Transformer

Translates a query response into a GeoJSON-formatted document.

KML Query Response Transformer

Translates a query response into a KML-formatted document.

Query Response Transformer Consumer

Translates a query response into a Catalog Metacard.

XML Query Response Transformer

Translates a query response into an XML-formatted document.

262

http://tools.ietf.org/html/rfc4287
http://www.opengeospatial.org/standards/cat

15.4. Transformers Details

Availability and configuration details of available transformers.

15.4.1. Atom Query Response Transformer

The Atom Query Response Transformer transforms a query response into an Atom 1.0 feed. The Atom
transformer maps a QueryResponse object as described in the Query Result Mapping.

15.4.1.1. Installing the Atom Query Response Transformer

The Atom Query Response Transformer is installed by default with a standard installation.

15.4.1.2. Configuring the Atom Query Response Transformer

The Atom Query Response Transformer has no configurable properties.

15.4.1.3. Using the Atom Query Response Transformer

Use this transformer when Atom is the preferred medium of communicating information, such as for
feed readers or federation. An integrator could use this with an endpoint to transform query responses
into an Atom feed.

For example, clients can use the OpenSearch Endpoint. The client can query with the format option set
to the shortname, atom.

Sample OpenSearch Query with Atom Specified as Return Format

http://{FQDN}:{PORT}/services/catalog/query?q=ddf?format=atom

Developers could use this transformer to programmatically transform QueryResponse objects on the fly.

Sample Atom Feed from QueryResponse object

<feed xmlns="http://www.w3.0rg/2005/Atom" xmlns:os="http://a9.com/-
/spec/opensearch/1.1/">
<title type="text">Query Response</title>
<updated>2017-01-31723:22:37.2981</updated>
<id>urn:uuid:a27352¢9-f935-45f0-9b8c-5803095164bb</id>
<link href="#" rel="self" />
<author>
<name>0rganization Name</name>
</author>
<generator version="2.1.0.20130129-1341">ddf123</generator>
<o0s:totalResults>1</os:totalResults>
<os:itemsPerPage>10</o0s:itemsPerPage>
<os:startIndex>1</o0s:startIndex>

263

http://tools.ietf.org/html/rfc4287

<entry xmlns:relevance="http://a9.com/-/opensearch/extensions/relevance/1.0/"
xmlns:fs="http://a9.com/-/opensearch/extensions/federation/1.0/"
xmlns:georss="http://www.georss.org/georss">
<fs:resultSource fs:sourceld="ddf123" />
<relevance:score>0.19</relevance:score>
<id>urn:catalog:id:ee7a161e01754b9db1872bfe39d1ead9</id>
<title type="text">F-15 lands in Libya; Crew Picked Up</title>
<updated>2013-01-31723:22:31.648Z</updated>
<published>2013-01-31T723:22:31.648Z</published>
<link href=
"http://123.45.67.123:8181/services/catalog/ddf123/ee7a161e01754b9db1872bfe39d1ead9" rel
="alternate" title="View Complete Metacard" />
<category term="Resource" />
<georss:where xmlns:gml="http://www.opengis.net/gml">
<gml:Point>
<gml:pos>32.8751900768792 13.1874561309814</gml:pos>
</gml:Point>
</georss:where>
<content type="application/xml">
<ns3:metacard xmlns:ns3="urn:catalog:metacard" xmlns:ns2=
“http://www.w3.0rg/1999/x1link" xmlns:ns1="http://www.opengis.net/gml"
xmlns:ns4="http://www.w3.0rg/2001/SMIL20/" xmlns:ns5=
"http://www.w3.0rg/2001/SMIL20/Lanquage” ns1:id="4535c53fc8bc4404a1d32a5ce7a29585">
<ns3:type>ddf.metacard</ns3:type>
<ns3:source>ddf.distribution</ns3:source>
<ns3:geometry name="location">
<ns3:value>
<ns1:Point>
<ns1:p0s>32.8751900768792 13.1874561309814</ns1:pos>
</ns1:Point>
</ns3:value>
</ns3:geometry>
<ns3:dateTime name="created">
<ns3:value>2013-01-31T716:22:31.648-07:00</ns3:value>
</ns3:dateTime>
<ns3:dateTime name="modified">
<ns3:value>2013-01-31716:22:31.648-07:00</ns3:value>
</ns3:dateTime>
<ns3:stringxml name="metadata">
<ns3:value>
<ns6:xml xmlns:ns6="urn:sample:namespace” xmlns=
"urn:sample:namespace">Example description.</ns6:xml>
</ns3:value>
</ns3:stringxml>
<ns3:string name="metadata-content-type-version">
<ns3:value>myVersion</ns3:value>
</ns3:string>
<ns3:string name="metadata-content-type">

264

<ns3:value>myType</ns3:value>

</ns3:string>

<ns3:string name="title">
<ns3:value>Example title</ns3:value>

</ns3:string>

</ns3:metacard>
</content>
</entry>
</feed>

Table 54. Atom Query Response Transformer Result Mapping

XPath to Atom XML Value

/feed/title "Query Response"

/feed/updated ISO 8601 dateTime of when the feed was generated
/feed/1id Generated UUID URN &

/feed/author/name Platform Global Configuration organization
/feed/generator Platform Global Configuration site name
/feed/generator/@version Platform Global Configuration version
/feed/os:totalResults SourceResponse Number of Hits
/feed/os:itemsPerPage Request’s Page Size

/feed/os:startIndex Request’s Start Index

/feed/entry/fs:resultSource/@fs:source gource Id from which the Result came.

Id Metacard.getSourceld()

/feed/entry/relevance:score Result’s relevance score if applicable.
Result.getRelevanceScore()

/feed/entry/id urn:catalog:id:<Metacard.ID>

/feed/entry/title Metacard.TITLE

/feed/entry/updated ISO 8601 dateTime of Metacard.MODIFIED

265

http://en.wikipedia.org/wiki/Universally_Unique_Identifier

XPath to Atom XML
/feed/entry/published

/feed/entry/link[@rel="related"]

/feed/entry/link[@rel="alternate’]

/feed/entry/category

/feed/entry//qgeorss:where

/feed/entry/content

Value

ISO 8601 dateTime of Metacard.CREATED

URL to retrieve underlying resource (if applicable and link
is available)

Link to alternate view of the Metacard (if a link is available)

Metacard.CONTENT_TYPE

GeoRSS GML of every Metacard attribute with format
AttributeFormat.GEOMETRY

Metacard XML generated by
DDF.catalog.transform.MetacardTransformer with
shortname=xml. If no transformer found,

/feed/entry/content/@type will be text and Metacard.ID is
displayed

<content
type="text">4e1f38d1913b4e93ac622e6c1b258f89</content>

15.4.2. CSW Query Response Transformer

The CSW Query Response Transformer transforms a query response into a CSW-formatted document.

15.4.2.1. Installing the CSW Query Response Transformer

The CSW Query Response Transformer is installed by default with a standard installation in the Spatial

application.

15.4.2.2. Configuring the CSW Query Response Transformer

The CSW Query Response Transformer has no configurable properties.

15.4.3. GeoJSON Input Transformer

The GeoJSON input transformer is responsible for translating GeoJSON into a Catalog metacard.

Table 55. GeoJSON Input Transformer Usage

266

http://www.opengeospatial.org/standards/cat

Schema Mime-types
N/A application/json
15.4.3.1. Installing the GeoJSON Input Transformer

The Geo]JSON Input Transformer is installed by default with a standard installation.

15.4.3.2. Configuring the GeoJSON Input Transformer

The GeoJSON Input Transformer has no configurable properties.

15.4.3.3. Using the Geo]JSON Input Transformer

Using the REST Endpoint, for example, HTTP POST a GeoJSON metacard to the Catalog. Once the REST
Endpoint receives the GeoJSON Metacard, it is converted to a Catalog metacard.

Example HTTP POST of a Local metacard. json File Using the Curl Command

curl -X POST -i -H "Content-Type: application/json" -d "@metacard.json"
https://{FQDN}:{PORT}/services/catalog

15.4.3.4. Conversion to a Metacard

A GeoJSON object consists of a single JSON object. This can be a geometry, a feature, or a
FeatureCollection. The GeoJSON input transformer only converts "feature" objects into metacards
because feature objects include geometry information and a list of properties. A geometry object alone
does not contain enough information to create a metacard. Additionally, the input transformer
currently does not handle FeatureCollections.

Cannot create Metacard from this limited GeoJ]SON

IMPORTANT { "type": "LineString",
"coordinates": [[100.0, 0.0], [101.0, 1.0]]

}

The following sample will create a valid metacard:

267

http://geojson.org/geojson-spec.html#geojson-objects

Sample Parseable GeoJson (Point)

{

"properties": {
"title": "myTitle",
"thumbnail": "CA==",
"resource-uri": "http://example.com",
"created": "2012-09-01700:09:19.368+0000",
"metadata-content-type-version": "myVersion",
"metadata-content-type": "myType",
"metadata": "<xml></xml>",
"modified": "2012-09-01T00:09:19.368+0000"

1

"type": "Feature",

"geometry": {
"type": "Point",
"coordinates": [

30.0,
10.0

1

}

}

In the current implementation, Metacard.LOCATION is not taken from the properties list as WKT, but
instead interpreted from the geometry JSON object. The geometry object is formatted according to the
GeoJSON standard. Dates are in the ISO 8601 standard. White space is ignored, as in most cases with
JSON. Binary data is accepted as Base64. XML must be properly escaped, such as what is proper for
normal JSON.

Currently, only Required Attributes are recognized in the properties.

15.4.3.4.1. Metacard Extensibility

Geo]JSON supports custom, extensible properties on the incoming GeoJSON using DDF’s extensible
metacard support. To have those customized attributes understood by the system, a corresponding
MetacardType must be registered with the MetacardTypeRegistry. That MetacardType must be specified by
name in the metacard-type property of the incoming GeoJSON. If a MetacardType is specified on the
GeoJSON input, the customized properties can be processed, cataloged, and indexed.

268

http://geojson.org/geojson-spec.html

Sample GeoJSON input

{

"properties": {
"title": "myTitle",
"thumbnail": "CA==",
"resource-uri": "http://example.com",
"created": "2012-09-01700:09:19.368+0000",
"metadata-content-type-version": "myVersion",
"metadata-content-type": "myType",
"metadata": "<xml></xml>",
"modified": "2012-09-01T00:09:19.368+0000",
"min-frequency": "10000000",
"max-frequency": "20000000",
"metacard-type": "ddf.metacard.custom.type"

Ji

"type": "Feature",

"geometry": {
"type": "Point",
"coordinates": [

30.0,
10.0

]

}

}

When the GeoJSON Input Transformer gets GeoJSON with the MetacardType specified, it will perform a
lookup in the MetacardTypeRegistry to obtain the specified MetacardType in order to understand how to
parse the GeoJSON. If no MetacardType is specified, the GeoJSON Input Transformer will assume the
default MetacardType. If an unregistered MetacardType is specified, an exception will be returned to the
client indicating that the MetacardType was not found.

15.4.3.5. Usage Limitations of the GeoJSON Input Transformer

The GeoJSON Input Transformer does not handle multiple geometries.

15.4.4. GeoJSON Metacard Transformer

Geo]JSON Metacard Transformer translates a metacard into GeoJSON.

15.4.4.1. Installing the GeoJSON Metacard Transformer

The GeoJSON Metacard Transformer is not installed by default with a standard installation.

To install:

269

1. Navigate to the Admin Console.

2. Select the System tab.

3. Select the Features tab.

4. Install the catalog-transformer-json feature.

15.4.4.2. Configuring the GeoJSON Metacard Transformer

The GeoJSON Metacard Transformer has no configurable properties.

15.4.4.3. Using the GeoJSON Metacard Transformer

The GeoJSON Metacard Transformer can be wused programmatically by requesting a
MetacardTransformer with the id geojson. It can also be used within the REST Endpoint by providing the
transform option as geojson.

Example REST GET Method with the GeoJSON Metacard Transformer

https://{FQDN}:{PORT}/services/catalog/0123456789abcdef@123456789abcdef?transform=geojson

270

Example REST GET Output from the GeoJ]SON Metacard Transformer

{
"properties":{
"title":"myTitle",
"thumbnail":"CA==",
"resource-uri":"http:\/\/example.com",
"created":"2012-08-31723:55:19.518+0000",

"metadata-content-type-version":"myVersion",
"metadata-content-type":"myType",
"metadata”:"<xml>text<\/xml>",
"modified":"2012-08-31723:55:19.518+0000",
"metacard-type": "ddf.metacard"

}

ype":"Feature",
"geometry":{

"type":"LineString",
"coordinates":[

15.4.5. GeoJSON Query Response Transformer

The GeoJSON Query Response Transformer translates a query response into a GeoJSON-formatted
document.

15.4.5.1. Installing the GeoJSON Query Response Transformer

The GeoJSON Query Response Transformer is installed by default with a standard installation in the
Catalog application.

271

15.4.5.2. Configuring the GeoJSON Query Response Transformer

The GeoJSON Query Response Transformer has no configurable properties.

15.4.6. KML Metacard Transformer

The KML Metacard Transformer is responsible for translating a metacard into a KML-formatted
document. The KML will contain an HTML description that will display in the pop-up bubble in Google
Earth. The HTML contains links to the full metadata view as well as the product.

15.4.6.1. Installing the KML Metacard Transformer

The KML Metacard Transformer is installed by default with a standard installation in the Spatial
Application.

15.4.6.2. Configuring the KML Metacard Transformer

The KML Metacard Transformer has no configurable properties.

15.4.6.3. Using the KML Metacard Transformer

Using the REST Endpoint for example, request a metacard with the transform option set to the KML
shortname.

KML Metacard Transformer Example Output

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<kml xmlns:ns2="http://www.google.com/kml/ext/2.2" xmlns="http://www.opengis.net/kml/2.2"
xmlns:ns4="urn:oasis:names:tc:ciq:xsdschema:xAL:2.0" xmlns:ns3=
"http://www.w3.0rg/2005/Atom">
<Placemark id="Placemark-0103c77e66d9428d8f48fab939da528e">
<name>MultiPolygon</name>
<description>&1t; !DOCTYPE html&qgt;
≪htmlé>
≪head&qgt;
<meta content="text/html; charset=windows-1252" http-equiv="content-type">
&1t;style media="screen" type="text/css">
.label {
font-weight: bold
}
.linkTable {
width: 100% }
.thumbnailDiv {
text-align: center
}
img {

272

max-width: 100px;
max-height: 100px;
border-style:none
}
≪ /styleéqt;
< /head>
&1t;bodyégt;

&1t;div class="thumbnailDiv"&qgt;&1t;a
href="http://{FQDN}:{PORT}/services/catalog/sources/ddf.distribution/0103c77e66d9428d8f48
fab939da528e?transform=resource">&1t;img alt="Thumnail"
src="data:image/jpeg;charset=utf-8;baseb64, CA=="Gqgt;&1t;/adqt;&1t;/divagt;

< tablebgt;

< trégt;
&1t;td class="label">Source:&1t;/tddqgt;
< td&qt;ddf.distribution</tdé&qgt;

< /tréqgt;

< tr>
&1t;td class="label"&qgt;Created:&1t;/td&qt;
&1t;td>Wed Oct 30 09:46:29 MDT 2013&1t;/td>

< /trégt;

≪ tr>

&1t;td class="label"Ggt;Effective:</tdbgt;

&1t;td>2014-01-07T14:58:16-0700&1t; /td>

≪ /tréqgt;

< /tableé>

<table class="linkTable"&qgt;
< trégt;

< td&qgt; &1t;a
href="http://{FQDN}:{PORT}/services/catalog/sources/ddf.distribution/0103c77e66d9428d848
fab939da528e?transform=html">View Details...</aGqt;&1t;/tdagt;

< td&qt; &1t;a
href="http://{FQDN}:{PORT}/services/catalog/sources/ddf.distribution/0103c77e66d9428d8f48
fab939da528e?transform=resource">Download...&1t;/aqqt;&1t;/tdagt;

< /trégt;
</table>
< /bodyégt;
&1t; /htmlé>
</description>
<TimeSpan>
<beqin>2014-01-07T721:58:16</begin>
</TimeSpan>
<Style id="bluenormal">
<LabelStyle>
<scale>0.0</scale>
</LabelStyle>
<LineStyle>
<color>33ff0000</color>
<width>3.0</width>

273

</LineStyle>
<PolyStyle>
<color>33ff0000</color>
<fill xsi:type="xs:boolean" xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">true</fill>
</PolyStyle>
<BalloonStyle>
<text>&1t;h3&qgt;&1t;b>$[name]&1t; /b>&1t; /h3>&1t; table&qt;&1t; tr>&1t;td
width="400">$[description]</tdéqt;&1t;/trégt;&1t;/tabledqgt;</text>
</BalloonStyle>
</Style>
<Style id="bluehighlight">
<LabelStyle>
<scale>1.0</scale>
</LabelStyle>
<LineStyle>
<color>99ff0000</color>
<width>6.0</width>
</LineStyle>
<PolyStyle>
<color>99ff0@000</color>
<fill xsi:type="xs:boolean" xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">true</fill>
</PolyStyle>
<BalloonStyle>
<text>&1t;h3&qt;&1t;b&qt;$[name]&1t;/b>&1t;/h3>&1t;table&qt;&1t; tré>
&1t;td width="400"&qgt;$[description]</tdégt;&1t;/trégt;&1t;/tabledgt;</text>
</BalloonStyle>
</Style>
<StyleMap id="default">
<Pair>
<key>normal</key>
<styleUr1>#bluenormal</styleUr1>
</Pair>
<Pair>
<key>highlight</key>
<styleUr1>#bluehighlight</styleUr1>
</Pair>
</StyleMap>
<MultiGeometry>
<Point>
<coordinates>102.0,2.0</coordinates>
</Point>
<MultiGeometry>
<Polygon>
<outerBoundaryIs>
<LinearRing>
<coordinates>102.0,2.0 103.0,2.0 103.0,3.0 102.0,3.0 102.0,2.0</

274

coordinates>
</LinearRing>
</outerBoundaryIs>
</Polygon>
<Polygon>
100.8,0.2
<outerBoundaryIs>
<LinearRing>
<coordinates>100.0,0.0 101.0,0.0 101.0,1.0 100.0,1.0 100.0,0.0 100.2,0.2 100.8
,0.8 100.2,0.8 100.2,0.2</coordinates>
</LinearRing>
</outerBoundaryIs>
</Polygon>
</MultiGeometry>
</Placemark>
</kml>

15.4.7. KML Query Response Transformer

The KML Query Response Transformer translates a query response into a KML-formatted document.
The KML will contain an HTML description for each metacard that will display in the pop-up bubble in
Google Earth. The HTML contains links to the full metadata view as well as the product.

15.4.7.1. Installing the KML Query Response Transformer

The spatial-kml-transformer feature is installed by default in the Spatial Application.

15.4.7.2. Configuring the KML Query Response Transformer

The KML Query Response Transformer has no configurable properties.

15.4.7.3. Using the KML Query Response Transformer

Using the OpenSearch Endpoint, for example, query with the format option set to the KML shortname:
kml.

KML Query Response Transformer URL

http://{FQDN}:{PORT}/services/catalog/query?q=schematypesearch&format=kml

KML Query Response Transformer Example Output
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<kml xmlns:ns2="http://www.google.com/kml/ext/2.2" xmlns="http://www.opengis.net/kml/2.2"
xmlns:ns4="urn:oasis:names:tc:ciq:xsdschema:xAL:2.0" xmlns:ns3=

275

"http://www.w3.0rg/2005/Atom">
<Document id="0884d8c-cf9Ib-44a1-bb5a-d3c6fb9a9bbo">
<name>Results (1)</name>
<open xsi:type="xs:boolean" xmlns:xs="http://www.w3.0rg/2001/XMLSchema" xmlns:xsi=
“http://www.w3.0rg/2001/XMLSchema-instance">false</open>
<Style id="bluenormal">
<LabelStyle>
<scale>0.0</scale>
</LabelStyle>
<LineStyle>
<color>33ff0000</color>
<width>3.0</width>
</LineStyle>
<PolyStyle>
<color>33ff0000</color>
<fill xsi:type="xs:boolean" xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">true</fill>
</PolyStyle>
<BalloonStyle>
<text>&1t;h3&qgt;&1t; b>$[name]&1t;/b&qt;&1t; /h3>&1t; table&qt;&1t; tré>
&1t;td width="400"gqt;$[description]</tdégt;&1t;/trégt;&1t;/tabledgt;</text>
</BalloonStyle>
</Style>
<Style id="bluehighlight">
<LabelStyle>
<scale>1.0</scale>
</LabelStyle>
<LineStyle>
<color>99ff0000</color>
<width>6.0</width>
</LineStyle>
<PolyStyle>
<color>99ff0@000</color>
<fill xsi:type="xs:boolean" xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">true</fill>
</PolyStyle>
<BalloonStyle>
<text>&1t;h3&qt;&1t;b&qt;$[name]&1t;/b>&1t;/h3>&1t;table&qt;&1t; tré>
&1t;td width="400"&qgt;$[description]</tdégt;&1t;/trégt;&1t;/tabledgt;</text>
</BalloonStyle>
</Style>
<StyleMap id="default">
<Pair>
<key>normal</key>
<styleUr1>#bluenormal</styleUr1>
</Pair>
<Pair>
<key>highlight</key>

276

<styleUr1>#bluehighlight</styleUrl>
</Pair>
</StyleMap>
<Placemark id="Placemark-0103c77e66d9428d8f48fab939da528e">
<name>MultiPolygon</name>
<description>< !DOCTYPE html>
< html>
<head>
<meta content="text/html; charset=windows-1252" http-equiv="content-type">
&1t;style media="screen" type="text/css">
.label {
font-weight: bold
}
.linkTable {
width: 100% }
.thumbnailDiv {
text-align: center

}img {
max-width: 100px;
max-height: 100px;
border-style:none
}
</styleédqt;
< /head>
&1t;bodyégt;

<div class="thumbnailDiv"><a
href="http://{FQDN}:{PORT}/services/catalog/sources/ddf.distribution/0103c77e66d9428d8f
48fab939da528e?transform=resource">&1t;img alt="Thumnail"
src="data:image/jpeg;charset=utf-8;base64, CA=="&qt;</adqt;&1t;/divéqgt;

< tableégt;
< tr>
<td class="label">Source:</td>
&1t; td&qt;ddf.distribution</td&qgt;
</tréqt;
< tr>
&1t;td class="label">Created:</td>
&1t; td>Wed Oct 30 09:46:29 MDT 2013&1t;/td>
≪ /tréqgt;
< trégt;
<td class="label">Effective:&1t;/td>
&1t; td&qt;2014-01-07T14:48:47-0700&1t; /td>
< /trégt;
</tableé&qt;
<table class="linkTable">
< tr>

< td&qgt; <a
href="http://{FQDN}:{PORT}/services/catalog/sources/ddf.distribution/0103c77e66d9428d8f
48fab939da528e?transform=html">View Details...</ak&qgt;&1t; /td>

277

&1t; td&qt; &1t;a
href="http://{FQDN}:{PORT}/services/catalog/sources/ddf.distribution/0103c77e66d9428d8f
48fab939da528e?transform=resource">Download...&1t; /a>&1t; /td>

< /trégt;
</tableé&qt;
< /bodyé>
≪ /htmlé>
</description>
<TimeSpan>
<begin>2014-01-07721:48:47</begin>
</TimeSpan>
<styleUrl>#tdefault</styleUrl>
<MultiGeometry>

<Point>

<coordinates>102.0,2.0</coordinates>
</Point>

<MultiGeometry>

<Polygon>
<outerBoundaryIs>
<LinearRing>
<coordinates>102.0,2.0 103.0,2.0 103.0,3.0 102.9,3.0
102.0,2.0</coordinates>
</LinearRing>
100.8,0.2
</outerBoundaryIs>
</Polygon>
<Polygon>
<outerBoundaryIs>
<LinearRing>
<coordinates>100.0,0.0 101.0,0.0 101.0,1.0 100.0,1.0 100.0,0.0 100.2,0.2
100.8,0.8 100.2,0.8 100.2,0.2</coordinates>
</LinearRing>
</outerBoundaryIs>
</Polygon>
</MultiGeometry>
</MultiGeometry>
</Placemark>
</Document>
</kml>

15.4.8. KML Style Mapper

The KML Style Mapper provides the ability for the KMLTransformer to map a KML Style URL to a
metacard based on that metacard’s attributes. For example, if a user wanted all JPEGs to be blue, the
KML Style Mapper provides the ability to do so. This would also allow an administrator to configure

278

metacards from each source to be different colors.

The configured style URLs are expected to be HTTP URLs. For more information on style URL’s, refer to
the KML Reference .

The KML Style Mapper supports all basic and extended metacard attributes. When a style mapping is
configured, the resulting transformed KML contain a <styleUr1> tag pointing to that style, rather than
the default KML style supplied by the KMLTransformer.

15.4.8.1. Installing the KML Style Mapper

The KML Style Mapper is installed by default with a standard installation in the Spatial Application in
the spatial-kml-transformer feature.

15.4.8.2. Configuring the KML Style Mapper

The properties below describe how to configure a style mapping. The configuration name is Spatial
KML Style Map Entry.

See KML Style Mapper configurations for all possible configurations.

KML Style Mapper Example Values

<xmlns="http://www.opengis.net/kml/2.2"
xmlns:ns4="urn:oasis:names:tc:ciq:xsdschema:xAL:2.0"
xmlns:ns3="http://www.w3.0rg/2005/Atom">
<Placemark id="Placemark-0103c77e66d9428d8f48fab939da528e">
<name>MultiPolygon</name>
<description>&1t; !DOCTYPE html>
&1t;htmlé>
&1t;headéqgt;
<meta content="text/html; charset=windows-1252" http-equiv="content-type">
<style media="screen" type="text/css">
.label {
font-weight: bold
}
.LlinkTable {
width: 100% }
.thumbnailDiv {
text-align: center
} img {
max-width: 100px;
max-height: 100px;
border-style:none
}
< /style&qt;
&1t; /head>
&1t;bodyégt;

279

https://developers.google.com/kml/documentation/kmlreference#styleurl

<div class="thumbnailDiv"&qgt;&1t;a
href="http://{FQDN}:{PORT}/services/catalog/sources/ddf.distribution/0103c77e66d9428d8f48
fab939da528e?transform=resource"&qt;&1t;img alt="Thumnail"
src="data:image/jpeq;charset=utf-8;base64, CA=="&qgt;&1t;/ak&qgt;&1t;/divégt;

&1t; tablebgt;
< trégt;
&1t;td class="label">Source:&1t;/tdé&qt;
&1t; td&qt;ddf.distribution</td>
< /tréqgt;
< trégt;
&1t;td class="label"&qgt;Created:&1t;/td&qt;
&1t;td>Wed Oct 30 09:46:29 MDT 2013&1t;/tdé>
< /tréqgt;
< tr>
&1t;td class="label"Ggt;Effective:</tdbat;
&1t;td>2014-01-07T14:58:16-0700&1t; /td>
≪ /tréqgt;
</table>
<table class="linkTable"&qgt;
< trégt;

< td&qgt; &1t;a
href="http://{FQDN}:{PORT}/services/catalog/sources/ddf.distribution/0103c77e66d9428d848
fab939da528e?transform=html">View Details...</aGqt;&1t;/tdagt;

< td> &1t;a
href="http://{FQDN}:{PORT}/services/catalog/sources/ddf.distribution/0103c77e66d9428d8f48
fab939da528e?transform=resource">Download...&1t;/aqqt;&1t;/tdaat;

</tré>
</table>
< /bodyé>
&1t;/html>
</description>
<TimeSpan>
<beqin>2014-01-07T721:58:16</begin>
</TimeSpan>
<styleUrl>http://example.com/kml/style#sampleStyle</styleUrl>
<MultiGeometry>
<Point>
<coordinates>102.0,2.0</coordinates>
</Point>
<MultiGeometry>
<Polygon>
<outerBoundaryIs>
<LinearRing>
<coordinates>102.0,2.0 103.0,2.0 103.90,3.0 102.0,3.0
102.0,2.0</coordinates>
</LinearRing>
</outerBoundaryIs>
</Polygon>

280

<Polygon>
100.8,0.2
<outerBoundaryIs>
<LinearRing>
<coordinates>100.0,0.0 101.0,0.0 101.0,1.0 100.0,1.0 100.0,0.0 100.2,0.2
100.8,0.8 100.2,0.8 100.2,0.2</coordinates>
</LinearRing>
</outerBoundaryIs>
</Polygon>
</MultiGeometry>
</MultiGeometry>
</Placemark>
</kml>

15.4.9. Metadata Metacard Transformer

The Metadata Metacard Transformer returns the Metacard.METADATA attribute when given a metacard.
The MIME Type returned is text/xml.

15.4.9.1. Installing the Metadata Metacard Transformer

The Metadata Metacard Transformer is installed by default in a standard installation with the Catalog
application.

15.4.9.2. Configuring the Metadata Metacard Transformer

The Metadata Metacard Transformer has no configurable properties.

15.4.9.3. Using the Metadata Metacard Transformer

The Metadata Metacard Transformer can be used programmatically by requesting a metacard
transformer with the id metadata. It can also be used within the REST Endpoint by providing the
transform option as metadata.

Example REST GET method with the Metadata Metacard Transformer

http://{FQDN}:{PORT}/services/catalog/0123456789abcdef@123456789abcdef?transform=metadata

15.4.10. PDF Input Transformer
The PDF Input Transformer is responsible for translating a PDF document into a Catalog Metacard.

Table 56. PDF Input Transformer Usage

281

Schema Mime-types
N/A application/pdf
15.4.10.1. Installing the PDF Input Transformer

The PDF Transformer is installed by default with a standard installation in the Catalog application.

15.4.10.2. Configuring the PDF Input Transformer

To configure the PDF Input Transformer:

1. Navigate to the Catalog application.
2. Select the Configuration tab.

3. Select the PDF Input Transformer.
These configurations are available for the PDF Input Transformer:

See PDF Input Transformer configurations for all possible configurations.

15.4.11. PPTX Input Transformer

The PPTX Input Transformer translates Microsoft PowerPoint (OOXML only) documents into Catalog
Metacards, using Apache Tika for basic metadata and Apache POI for thumbnail creation. The PPTX
Input Transformer ingests PPTX documents into the DDF Content Repository and the Metadata Catalog,
and adds a thumbnail of the first page in the PPTX document.

The PPTX Input Transformer will take precedence over the Tika Input Transformer for PPTX
documents.

Table 57. PPTX Input Transformer Usage

Schema Mime-types

N/A application/vnd.openxmlformats-
officedocument.presentationml.presentation

15.4.11.1. Installing the PPTX Input Transformer

This transformer is installed by default with a standard installation in the Catalog application.

15.4.11.2. Configuring the PPTX Input Transformer

The PPTX Input Transformer has no configurable properties.

15.4.12. Query Response Transformer Consumer

The Query Response Transformer Consumer is responsible for translating a query response into a
Catalog Metacard.

282

https://tika.apache.org/
https://poi.apache.org/

15.4.12.1. Installing the Query Response Transformer Consumer

The Query Response Transformer Consumer is installed by default with a standard installation in the
Catalog application.

15.4.12.2. Configuring the Query Response Transformer Consumer

The Query Response Transformer Consumer has no configurable properties.

15.4.13. Registry Transformer

The Registry Transformer creates Registry metacards from ebrim messages. It also returns the ebrim
message from the metacard metadata.

15.4.13.1. Installing the Registry Transformer

The Registry Transformer is installed with the Registry application.

1. Install Registry application.

15.4.13.2. Configuring the Registry Transformer

The Registry Transformer has no configurable properties.

15.4.14. Resource Metacard Transformer

The Resource Metacard Transformer retrieves a resource associated with a metacard.

15.4.14.1. Installing the Resource Metacard Transformer

The Resource Metacard Transformer is installed by default in a standard installation with the Catalog
application as the feature catalog-transformer-resource.

15.4.14.2. Configuring the Resource Metacard Transformer

The Resource Metacard Transformer has no configurable properties.

15.4.14.3. Using the Resource Metacard Transformer

Endpoints or other components can retrieve an instance of the Resource Metacard Transformer using
its id resource.

Sample Resource Metacard Transformer Blueprint Reference Snippet

<reference id="metacardTransformer" interface="ddf.catalog.transform.MetacardTransformer"
filter="(id=resource)"/>

283

15.4.15. Thumbnail Metacard Transformer

The Thumbnail Metacard Transformer retrieves the thumbnail bytes of a Metacard by returning the
Metacard.THUMBNAIL attribute value.

15.4.15.1. Installing the Thumbnail Metacard Transformer

This transformer is installed by default with a standard installation in the Catalog application.

15.4.15.2. Configuring the Thumbnail Metacard Transformer

The Thumbnail Metacard Transformer has no configurable properties.

15.4.15.3. Using the Thumbnail Metacard Transformer

Endpoints or other components can retrieve an instance of the Thumbnail Metacard Transformer
using its id thumbnail.

Sample Blueprint Reference Snippet

<reference id="metacardTransformer" interface="ddf.catalog.transform.MetacardTransformer"
filter="(id=thumbnail)"/>

The Thumbnail Metacard Transformer returns a BinaryContent object of the Metacard.THUMBNAIL bytes
and a MIME Type of image/jpeq.

15.4.16. Tika Input Transformer

The Tika Input Transformer is the default input transformer responsible for translating Microsoft
Word, Microsoft Excel, Microsoft PowerPoint, OpenOffice Writer, and PDF documents into Catalog
records. This input transformer utilizes Apache Tika to provide basic support for these mime types.
The metadata common to all these document types, e.g., creation date, author, last modified date, etc.,
is extracted and used to create the catalog record. The Tika Input Transformer’s main purpose is to
ingest these types of content into the Metadata Catalog.

The Tika input transformer is most basic input transformer and the last to be invoked. This allows any
registered input transformers that are more specific to a document type to be invoked instead of this
rudimentary input transformer.

Table 58. Tika Input Transformer Usage

Schema Mime-types
N/A This basic transformer can ingest many file types. See All Formats
Supported.

284

https://tika.apache.org

15.4.16.1. Installing the Tika Input Transformer

This transformer is installed by default with a standard installation in the Catalog.

15.4.16.2. Configuring the Tika Input Transformer

The properties below describe how to configure the Tika input transformer.

See Tika Input Transformer configurations for all possible configurations.

15.4.17. Video Input Transformer

The video input transformer Creates Catalog metacards from certain video file types. Currently, it is
handles MPEG-2 transport streams as well as MPEG-4, AVI, MOV, and WMV videos. This input
transformer uses Apache Tika to extract basic metadata from the video files and applies more
sophisticated methods to extract more meaningful metadata from these types of video.
Table 59. Video Input Transformer Usage
Schema Mime-types
N/A * video/avi

* video/msvideo

e video/vnd.avi

* video/x-msvideo

» video/mp4

» video/MP2T

» video/mpeg

* video/quicktime

* video/wmv

e video/x-ms-wmv

15.4.17.1. Installing the Video Input Transformer

This transformer is installed by default with a standard installation in the Catalog application.

15.4.17.1.1. Configuring the Video Input Transformer

The Video Input Transformer has no configurable properties.

15.4.18. XML Input Transformer

The XML Input Transformer is responsible for translating an XML document into a Catalog Metacard.

285

https://tika.apache.org

Table 60. XML Input Transformer Usage

Schema Mime-types

urn:catalog:metacard text/xml

15.4.18.1. Installing the XML Input Transformer

The XML Input Transformer is installed by default with a standard installation in the Catalog
application.

15.4.18.2. Configuring the XML Input Transformer

The XML Input Transformer has no configurable properties.

15.4.19. XML Metacard Transformer

The XML metacard transformer is responsible for translating a metacard into an XML-formatted
document. The metacard element that is generated is an extension of gml:AbstractFeatureType, which
makes the output of this transformer GML 3.1.1 compatible.

15.4.19.1. Installing the XML Metacard Transformer
This transformer comes installed by default with a standard installation in the Catalog application.
To install or uninstall manually, use the catalog-transformer-xml feature.

15.4.19.2. Configuring the XML Metacard Transformer

The XML Metacard Transformer has no configurable properties.

15.4.19.3. Using the XML Metacard Transformer

Using the REST Endpoint for example, request a metacard with the transform option set to the XML
shortname.

XML Metacard Transformer URL

https://{FQDN}:{PORT}/services/catalog/ac0c6917d5ee45bfb3c2bf8cd2ebaab7?transform=xml

Table 61. Metacard to XML Mappings

Metacard Variables XML Element
id metacard/@gml:id
metacardType metacard/type
sourceld metacard/source

286

Metacard Variables XML Element

all other attributes metacard/<AttributeType>[name="<AttributeName>"]
/value
For instance, the value for the metacard
attribute named "title" would be found at
metacard/string[@name="title']/value

XML Adapted Attributes (AttributeTypes)
« boolean
« base64Binary
o dateTime
« double
« float
« geometry
o int
« long
« object
« short
« string

o stringxml

15.4.20. XML Query Response Transformer

The XML Query Response Transformer is responsible for translating a query response into an XML-
formatted document. @ The metacard element generated is an extension of
gml:AbstractFeatureCollectionType, which makes the output of this transformer GML 3.1.1 compatible.

15.4.20.1. Installing the XML Query Response Transformer

This transformer is installed by default with a standard installation in the Catalog application. To
uninstall, uninstall the catalog-transformer-xml feature.

15.4.20.2. Configuring the XML Query Response Transformer

To configure the XML Query Response Transformer:

1. Navigate to the Admin Console.
2. Select the Catalog application.
3. Select the Configuration tab.

4. Select the XML Query Response Transformer.

See XML Query Response Transformer configurations for all possible configurations.

287

http://www.opengeospatial.org/projects/groups/gmldwg

15.4.20.3. Using the XML Query Response Transformer

Using the OpenSearch Endpoint, for example, query with the format option set to the XML shortname
xmL.

XML Query Response Transformer Query Example

http://{FQDN}:{PORT}/services/catalog/query?q=input?format=xml

XML Query Response Transformer Example Output

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ns3:metacards xmlns:ns1="http://www.opengis.net/gml" xmlns:ns2=
“http://www.w3.0rg/1999/x1link" xmlns:ns3="urn:catalog:metacard" xmlns:nsd=
"http://www.w3.0rg/2001/SMIL20/" xmlns:ns5="http://www.w3.0rg/2001/SMIL20/Language">
<ns3:metacard ns1:i1d="000ba4dd7d974e258845a84966d766eb">
<ns3:type>ddf.metacard</ns3:type>
<ns3:source>southwestCatalogl</ns3:source>
<ns3:dateTime name="created">
<ns3:value>2013-04-10T15:30:05.702-07:00</ns3:value>
</ns3:dateTime>
<ns3:string name="title">
<ns3:value>Input 1</ns3:value>
</ns3:string>
</ns3:metacard>
<ns3:metacard ns1:id="00c@eb4badb74f8b988ef7060e18a6a7">
<ns3:type>ddf.metacard</ns3:type>
<ns3:source>southwestCatalogi</ns3:source>
<ns3:dateTime name="created">
<ns3:value>2013-04-10T715:30:05.702-07:00</ns3:value>
</ns3:dateTime>
<ns3:string name="title">
<ns3:value>Input 2</ns3:value>
</ns3:string>
</ns3:metacard>
</ns3:metacards>

15.5. Mime Type Mapper

The MimeTypeMapper is the entry point in DDF for resolving file extensions to mime types, and vice
versa.

MimeTypeMappers are used by the ResourceReader to determine the file extension for a given mime type in
aid of retrieving a product. MimeTypeMappers are also used by the FileSystemProvider in the Catalog

288

Framework to read a file from the content file repository.
The MimeTypeMapper maintains a list of all of the MimeTypeResolvers in DDF.

The MimeTypeMapper accesses each MimeTypeResolver according to its priority until the provided file
extension is successfully mapped to its corresponding mime type. If no mapping is found for the file
extension, null is returned for the mime type. Similarly, the MimeTypeMapper accesses each
MimeTypeResolver according to its priority until the provided mime type is successfully mapped to its
corresponding file extension. If no mapping is found for the mime type, null is returned for the file
extension.

For files with no file extension, the MimeTypeMapper will attempt to determine the mime type from
the contents of the file. If it is unsuccessful, the file will be ingested as a binary file.

DDF Mime Type Mapper
Core implementation of the DDF Mime API.

15.5.1. DDF Mime Type Mapper

The DDF Mime Type Mapper is the core implementation of the DDF Mime API. It provides access to all
MimeTypeResolvers within DDF, which provide mapping of mime types to file extensions and file
extensions to mime types.

15.5.1.1. Installing the DDF Mime Type Mapper

The DDF Mime Type Mapper is installed by default with a standard installation in the Platform
application.

15.5.1.2. Configuring DDF Mime Type Mapper

The DDF Mime Type Mapper has no configurable properties.

15.6. Mime Type Resolver

A MimeTypeResolver is a DDF service that can map a file extension to its corresponding mime type and,
conversely, can map a mime type to its file extension.

MimeTypeResolvers are assigned a priority (0-100, with the higher the number indicating the higher
priority). This priority is used to sort all of the MimeTypeResolvers in the order they should be checked to
map a file extension to a mime type (or vice versa). This priority also allows custom MimeTypeResolvers
to be invoked before default MimeTypeResolvers by setting custom resolver’s priority higher than the
default.

MimeTypeResolvers are not typically invoked directly. Rather, the MimeTypeMapper maintains a list of
MimeTypeResolvers (sorted by their priority) that it invokes to resolve a mime type to its file extension

289

(or to resolve a file extension to its mime type).

Custom Mime Type Resolver

The Custom Mime Type Resolver is a MimeTypeResolver that defines the custom mime types that DDF
will support.

Tika Mime Type Resolver

Provides support for resolving over 1300 mime types.

15.6.1. Custom Mime Type Resolver
These are mime types not supported by the default TikaMimeTypeResolver.

Table 62. Custom Mime Type Resolver Default Supported Mime Types

File Extension Mime Type

nitf image/nitf

ntf image/nitf

json json=application/json;id=geojson

As a MimeTypeResolver, the Custom Mime Type Resolver will provide methods to map the file extension
to the corresponding mime type, and vice versa.

15.6.1.1. Installing the Custom Mime Type Resolver

One Custom Mime Type Resolver is configured and installed for the image/nitf mime type. This custom
resolver is bundled in the mime-core-app application and is part of the mime-core feature.

Additional Custom Mime Type Resolvers can be added for other custom mime types.

15.6.1.1.1. Configuring the Custom Mime Type Resolver

The configurable properties for the Custom Mime Type Resolver are accessed from the MIME Custom
Types configuration in the Admin Console.

* Navigate to the Admin Console.
* Select the Platform application.
* Select Configuration.

» Select MIME Custom Types.

Managed Service Factory PID
o Ddf_Custom_Mime_Type_Resolver

See Custom Mime Type Resolver configurations for all possible configurations.

290

15.6.2. Tika Mime Type Resolver

The TikaMimeTypeResolver is a MimeTypeResolver that is implemented using the Apache Tika open source

product.

Using the Apache Tika content analysis toolkit, the TikaMimeTypeResolver provides support for resolving
over 1300 mime types, but not all mime types yield the same quality metadata.

The TikaMimeTypeResolver is assigned a default priority of -1 to insure that it is always invoked last by
the MimeTypeMapper. This insures that any custom MimeTypeResolvers that may be installed will be

invoked before the TikaMimeTypeResolver.

The TikaMimeTypeResolver provides the bulk of the default mime type support for DDF.

15.6.2.1. Installing the Tika Mime Type Resolver

The TikaMimeTypeResolver is bundled as the mime-tika-resolver feature in the mime-tika-app application.

This feature is installed by default.

15.6.2.1.1. Configuring the Tika Mime Type Resolver

The Tika Mime Type Resolver has no configurable properties.

16. Catalog Plugins

Endpoints

Operations Data

Transformers

Federation

Sources

Catalog Framework

Eventing

Catalog

Plugins

Resources

Catalog Provider

Storage Provider

Catalog Architecture: Catalog Plugins

291

https://tika.apache.org

Plugins are additional tools to use to add additional business logic at certain points, depending on the
type of plugin.

The Catalog Framework calls Catalog Plugins to process requests and responses as they enter and leave
the Framework.

16.1. Types of Plugins

Plugins can be designed to run before or after certain processes. They are often used for validation,
optimization, or logging. Many plugins are designed to be called at more than one time. See Catalog
Plugin Compatibility.

Pre-Authorization Plugins

Perform any changes needed before security rules are applied.

Policy Plugins

Allows or denies access to the Catalog operation or response.

Access Plugins

Used to build policy information for requests.

Pre-Ingest Plugins

Perform any changes to a metacard prior to ingest.

Post-Ingest Plugins

Perform actions after ingest is completed.

Post-Process Plugins

Performs additional processing after ingest.

Pre-Query Plugins

Perform any changes to a query before execution.

Pre-Federated-Query Plugins

Perform any changes to a federated query before execution.

Post-Query Plugins

Perform any changes to a response after query completes.

Post-Federated-Query Plugins

Perform any changes to a response after federated query completes.

Pre-Resource Plugins

Perform any changes to a request associated with a metacard prior to download.

292

Post-Resource Plugins

Perform any changes to a resource after download.

Pre-Create Storage Plugins

Perform any changes before creating a resource.

Post-Create Storage Plugins

Perform any changes after creating a resource.

Pre-Update Storage Plugins

Perform any changes before updating a resource.

Post-Update Storage Plugins

Perform any changes after updating a resource.

Pre-Subscription Plugins

Perform any changes before creating a subscription.

Pre-Delivery Plugins

Perform any changes before delivering a subscribed event.

Plugins are called in a specific order during different operations. Custom Plugins can be added to the
chain for special use cases.

293

&%
c®
<
"
-

PreAuthorization.processPreQuery

PolicyPlugin.processPreQuery

AccessPlugin.processPreQuery

PreQueryPlugin.process

PreFederatedQueryPlugin.process

PostFederatedQueryPlugin.process

PolicyPlugin.processPostQuery.process

AccessPlugin.processPostQuery

PostQueryPlugin.process

Query Request Plugin Call Order

294

Create
Request

PreAuthorization.processPreCreate

PolicyPlugin.processPreCreate

AccessPlugin.processPreCreate

PrelngestPlugin.process

PostingestPlugin.process

Create Request Plugin Call Order

295

Update
Request

PreAuthorization.processPreUpdate

PolicyPlugin.processPreUpdate

AccessPlugin.processPrelUpdate

PrelngestPlugin.process

PostingestPlugin.process

Update Request Plugin Call Order

296

Delete
Request

PreAuthorization.processPreDelete

PolicyPlugin.processPreDelete

AccessPlugin.processPreDelete

PrelngestPlugin.process

PolicyPlugin.processPostDelete

AccessPlugin.processPostDelete

PostingestPlugin.process

Delete Request Plugin Call Order

297

|

Resource
Request

i

PreAuthorization.processPreResource
PolicyPlugin.processPreResource
AccessPlugin.processPostResource
PreResourcePlugin.process
PolicyPlugin.processPostResource
AccessPlugin.processPostResource

PostResourcePlugin.process

Resource Request Plugin Call Order

298

Storage Create
Request

-+

PreAuthorization.processPreCreate

PreCreateStoragePlugin.process

||

See Create

o
| S—

PostCreateStoragePlugin.process

-i—|‘i—

Storage Create Request Plugin Call Order

Storage Update
Request

-+

PreAuthorization.processPreUpdate

PreUpdateStoragePlugin.process

||

See Update

.
| S—

PostUpdate5StoragePlugin.process

-'I—|-'I—

Storage Update Request Plugin Call Order

Table 63. Catalog Plugin Compatibility

299

Plugin

Catalog
Backup
Plugin

Catalog
Metrics
Plugin

Catalog
Policy
Plugin
Client
Info
Plugin
Content
URI
Access
Plugin
Event
Processor
Expiratio
n Date

Pre-Ingest
Plugin

Filter
Plugin

GeoCoder
Plugin
Historian
Policy
Plugin
Identificat
ion Plugin

JPEG2000
Thumbnai
1
Converter

300

Pre- Policy
Authoriz Plugins
ation

Plugins

X

Access
Plugins

Pre-
Ingest
Plugins

Post-
Ingest
Plugins

Pre-

Query
Plugins

Post-

Query
Plugins

Post-
Process
Plugins

Plugin Pre- Policy Access Pre- Post- Pre- Post- Post-
Authoriz Plugins Plugins Ingest Ingest Query Query Process
ation Plugins Plugins Plugins Plugins Plugins
Plugins

Metacard X
Attribute

Security

Policy

Plugin

Metacard X
Backup

File

Storage

Provider

Metacard X
Backup S3

Storage

Provider

Metacard X
Groomer

Metacard X
Resource

Size

Plugin

Metacard X
Validity

Filter

Plugin

Metacard X
Validity
Marker

Metacard x

Ingest

Network

Plugin

Operation X
Plugin

Point of X
Contact

Policy

Plugin

301

Plugin Pre- Policy
Authoriz Plugins
ation
Plugins

Processin
g Post-
Ingest
Plugin

Registry X
Policy
Plugin

Resource X
URI Policy
Plugin

Security
Audit
Plugin

Security
Logging
Plugin
Security
Plugin

Source
Metrics
Plugin

Workspac
e Access
Plugin

Workspac
e Pre-
Ingest
Plugin

Workspac X
e Sharing

Policy

Plugin

XML X
Attribute

Security

Policy

Plugin

Access
Plugins

Table 64. Catalog Plugin Compatibility, Cont.

302

Pre-
Ingest
Plugins

Post-
Ingest
Plugins

Pre-

Query
Plugins

Post-

Query
Plugins

Post-
Process
Plugins

Plugin Pre- Post- Pre- Post- Pre- Post- Pre- Post- Pre- Pre-
Federat Federat Resour Resour Create Create Update Update Subscri Deliver
ed- ed- ce ce Storage Storage Storage Storage ption |y
Query Query Plugins Plugins Plugins Plugins Plugins Plugins Plugins Plugins
Plugins Plugins

Catalog X

Metrics

Plugin

Checksu X X
m
Plugin

Resourc X X
e Usage
Plugin

Security x! X X X X X X X

Logging
Plugin

Source X
Metrics
Plugin

Video X X
Thumb

nail

Plugin

16.1.1. Pre-Authorization Plugins

Pre-delivery plugins are invoked before any security rules are applied. This is an opportunity to take
any action before authorization, including but not limited to:

* logging.

* adding network-specific information.

* adding user-identifying information.
16.1.1.1. Available Pre-Authorization Plugins

Client Info Plugin

Injects request-specific network information into a request.

Metacard Ingest Network Plugin

Adds attributes for network info from ingest request.

303

16.1.2. Policy Plugins

Policy plugins are invoked to set up the policy for a request/response. This provides an opportunity to
attach custom requirements on operations or individual metacards. All the 'requirements' from each
Policy plugin will be combined into a single policy that will be included in the request/response. Access
plugins will be used to act on this combined policy.

16.1.2.1. Available Policy Plugins

Catalog Policy Plugin

Configures user attributes required for catalog operations.

Historian Policy Plugin

Protects metacard history from being edited by users without the history role.

Metacard Attribute Security Policy Plugin

Collects attributes into a security field for the metacard.

Metacard Validity Filter Plugin

Determines whether to filter metacards with validation errors or warnings.

Point of Contact Policy Plugin
Adds a policy if Point of Contact is updated.

Registry Policy Plugin

Defines user access polices for registry operations.

Resource URI Policy Plugin

Configures required user attributes for setting or altering a resource URIL.

Workspace Sharing Policy Plugin

Collects attributes for a workspace to identify the appropriate policy to allow sharing.

XML Attribute Security Policy Plugin

Finds security attributes contained in a metacard’s metadata.

16.1.3. Access Plugins

Access plugins are invoked directly after the Policy plugins have been successfully executed. This is an
opportunity to either stop processing or modify the request/response based on policy information.

16.1.3.1. Available Access Plugins

Content URI Access Plugin

Prevents a Metacard’s resource URI from being overridden by an incoming UpdateRequest.

304

Filter Plugin

Performs filtering on query responses as they pass through the framework.

Operation Plugin

Validates a user or subject’s security attributes.

Security Audit Plugin

Audits specific metacard attributes.

Security Plugin

Identifies the subject for an operation.

Workspace Access Plugin

Prevents non-owner users from changing workspace permissions.

16.1.4. Pre-Ingest Plugins

DDF¢

H[Catalog Framework 4—)-
J L

v v

[Prelngest Plugins]

Postingest Plugins]

L F

Ingest Plugin Flow

Pre-ingest plugins are invoked before an ingest operation is sent to the catalog. They are not run on a
query. This is an opportunity to take any action on the ingest request, including but not limited to:

* validation.
* logging.
* auditing.

* optimization.

305

* security filtering.

16.1.4.1. Available Pre-Ingest Plugins

Expiration Date Pre-Ingest Plugin

Adds or updates expiration dates for the resource.

GeoCoder Plugin
Populates the Location.COUNTRY_CODE attribute if the Metacard has an associated location.

Identification Plugin

Manages IDs on registry metacards.

Metacard Groomer

Modifies metacards when created or updated.

Metacard Validity Marker
Modifies metacards when created or ingested according to metacard validator services.

Security Logging Plugin

Logs operations to the security log.

Workspace Pre-Ingest Plugin
Verifies that a workspace has an associated email to enable sharing.

16.1.5. Post-Ingest Plugins

306

%

DDF¢

H[Catalog Framework H
) L

' '

[PreQuery Plugins] [PostQuery Plugins]

LS A

Query Plugin Flow

Post-ingest plugins are invoked after data has been created, updated, or deleted in a Catalog Provider.

16.1.5.1. Available Post-Ingest Plugins

Catalog Backup Plugin

Enables backup of the catalog and its metacards.

Catalog Metrics Plugin

Captures metrics on catalog operations.

Event Processor

Creates, updates, and deletes subscriptions.

Identification Plugin

Manages IDs on registry metacards.

Metacard Backup File Storage Provider

Stores backed-up metacards.

Metacard Backup S3 Storage Provider

Stores backed-up metacards in a specified S3 bucket and key.

Processing Post-Ingest Plugin

Submits catalog Create, Update, or Delete requests to the Processing Framework.

307

Security Logging Plugin

Logs operations to the security log.

Source Metrics Plugin

Captures metrics on catalog operations.

16.1.6. Post-Process Plugins

This code is experimental. While this interface is functional and tested, it may change

NOTE
or be removed in a future version of the library.

Post-Process Plugins are invoked after a metacard has been created, updated, or deleted and
committed to the Catalog. They are the last plugins to run and are triggered by a Post-Ingest Plugin.
Post-Process plugins are well-suited for asynchronous tasks. See the Asynchronous Processing
Framework for more information about how Post-Process Plugins are used.

16.1.6.1. Available Post-Process Plugins

None.

16.1.7. Pre-Query Plugins

Pre-query plugins are invoked before a query operation is sent to any of the Sources. This is an
opportunity to take any action on the query, including but not limited to:

* validation.

* logging.

* auditing.

* optimization.

* security filtering.

16.1.7.1. Available Pre-Query Plugins

Catalog Metrics Plugin

Captures metrics on catalog operations.

Security Logging Plugin

Logs operations to the security log.

Source Metrics Plugin

Captures metrics on catalog operations.

308

16.1.8. Pre-Federated-Query Plugins

Pre-federated-query plugins are invoked before a federated query operation is sent to any of
the Sources. This is an opportunity to take any action on the query, including but not limited to:

* validation.

* logging.

* auditing.

* optimization.

* security filtering.

16.1.8.1. Available Pre-Federated-Query Plugins

Security Logging Plugin

Logs operations to the security log.
Tags Filter Plugin

Updates queries without filters.
16.1.9. Post-Query Plugins

Post-query plugins are invoked after a query has been executed successfully, but before the response is
returned to the endpoint. This is an opportunity to take any action on the query response, including
but not limited to:

* logging.

* auditing.

security filtering/redaction.
* deduplication.
16.1.9.1. Available Post-Query Plugins

Catalog Metrics Plugin

Captures metrics on catalog operations.

JPEG2000 Thumbnail Converter

Creates thumbnails for jpeg2000 images.

Metacard Resource Size Plugin

Updates the resource size attribute of a metacard.

Security Logging Plugin

Logs operations to the security log.

309

Source Metrics Plugin

Captures metrics on catalog operations.

16.1.10. Post-Federated-Query Plugins

Post-federated-query plugins are invoked after a federated query has been executed successfully, but
before the response is returned to the endpoint. This is an opportunity to take any action on the query
response, including but not limited to:

* logging.

* auditing.

security filtering/redaction.

* deduplication.
16.1.10.1. Available Post-Federated-Query Plugins
Security Logging Plugin
Logs operations to the security log.
16.1.11. Pre-Resource Plugins

Pre-Resource plugins are invoked before a request to retrieve a resource is sent to a Source. This is an
opportunity to take any action on the request, including but not limited to:

* validation.
* logging.
* auditing.
* optimization.
* security filtering.
16.1.11.1. Available Pre-Resource Plugins

Resource Usage Plugin

Monitors and limits system data usage.
Security Logging Plugin

Logs operations to the security log.

16.1.12. Post-Resource Plugins

Post-resource plugins are invoked after a resource has been retrieved, but before it is returned to the
endpoint. This is an opportunity to take any action on the response, including but not limited to:

310

* logging.
* auditing.

* security filtering/redaction.

16.1.12.1. Available Post-Resource Plugins

Catalog Metrics Plugin

Captures metrics on catalog operations.

Resource Usage Plugin

Monitors and limits system data usage.

Security Logging Plugin

Logs operations to the security log.

Source Metrics Plugin

Captures metrics on catalog operations.

16.1.13. Pre-Create Storage Plugins

Pre-Create storage plugins are invoked immediately before an item is created in the content repository.

16.1.13.1. Available Pre-Create Storage Plugins

Checksum Plugin

Creates a unique checksum for ingested resources.
Security Logging Plugin

Logs operations to the security log.

16.1.14. Post-Create Storage Plugins

Post-Create storage plugins are invoked immediately after an item is created in the content repository.

16.1.14.1. Available Post-Create Storage Plugins

Security Logging Plugin

Logs operations to the security log.

Video Thumbnail Plugin

Generates thumbnails for video files.

16.1.15. Pre-Update Storage Plugins

Pre-Update storage plugins are invoked immediately before an item is updated in the content

311

repository.

16.1.15.1. Available Pre-Update Storage Plugins

Checksum Plugin

Creates a unique checksum for ingested resources.
Security Logging Plugin

Logs operations to the security log.
16.1.16. Post-Update Storage Plugins

Post-Update storage plugins are invoked immediately after an item is updated in the content
repository.

16.1.16.1. Available Post-Update Storage Plugins

Security Logging Plugin

Logs operations to the security log.
Video Thumbnail Plugin

Generates thumbnails for video files.
16.1.17. Pre-Subscription Plugins

Pre-subscription plugins are invoked before a Subscription is activated by an Event Processor. This is
an opportunity to take any action on the Subscription, including but not limited to:

* validation.

* logging.
 auditing.

* optimization.

* security filtering.

16.1.17.1. Available Pre-Subscription Plugins

None.

16.1.18. Pre-Delivery Plugins

Pre-delivery plugins are invoked before a Delivery Method is invoked on a Subscription. This is an
opportunity to take any action before event delivery, including but not limited to:

* logging.

312

* auditing.
* security filtering/redaction.
16.1.18.1. Available Pre-Delivery Plugins

None.

16.2. Catalog Plugin Details

Installation and configuration details listed by plugin name.

16.2.1. Catalog Backup Plugin

The Catalog Backup Plugin is used to enable data backup of the catalog and the metacards it contains.

Catalog Backup Plugin Considerations
WARNING _ . , , ‘
Using this plugin may impact performance negatively.

16.2.1.1. Installing the Catalog Backup Plugin

The Catalog Backup Plugin is installed by default with a standard installation in the Catalog
application.

16.2.1.2. Configuring the Catalog Backup Plugin

To configure the Catalog Backup Plugin:

1. Navigate to the Admin Console.
2. Select Catalog application.
3. Select Configuration tab.

4. Select Backup Post-Ingest Plugin.

See Catalog Backup Plugin configurations for all possible configurations.

16.2.1.3. Usage Limitations of the Catalog Backup Plugin

* May affect performance.
* Must be installed prior to ingesting any content.

* Once enabled, disabling may cause incomplete backups.

313

16.2.2. Catalog Metrics Plugin

The Catalog Metrics Plugin captures metrics on catalog operations. These metrics can be viewed and
analyzed using the Metrics Reporting Application in the Admin Console.

16.2.2.1. Related Components to the Source Metrics Plugin

» Source Metrics Plugin.

16.2.2.2. Installing the Catalog Metrics Plugin

The Catalog Metrics Plugin is installed by default with a standard installation in the Catalog
application.

16.2.2.3. Configuring the Catalog Metrics Plugin

The Catalog Metrics Plugin has no configurable properties.

16.2.3. Catalog Policy Plugin

The Catalog Policy Plugin configures the attributes required for users to perform Create, Read, Update,
and Delete operations on the catalog.

16.2.3.1. Installing the Catalog Policy Plugin

The Catalog Policy Plugin is installed by default with a standard installation in the Catalog application.

16.2.3.2. Configuring the Catalog Policy Plugin

To configure the Catalog Policy Plugin:

1. Navigate to the Admin Console.
2. Select Catalog application.
3. Select Configuration tab.

4. Select Catalog Policy Plugin.

See Catalog Policy Plugin configurations for all possible configurations.

16.2.4. Checksum Plugin

The Checksum plugin creates a unique checksum for resources input into the system to identify
updated content.

314

16.2.4.1. Installing the Checksum Plugin

The Checksum is installed by default with a standard installation in the Catalog application.

16.2.4.2. Configuring the Checksum Plugin

The Checksum Plugin has no configurable properties.

16.2.5. Client Info Plugin

The client info plugin injects request-specific network information into request properties, such as
Remote IP Address, Remote Host Name, Servlet Scheme, and Servlet Context.

16.2.5.1. Related Components to the Client Info Plugin
* Client info filter
* Metacard Ingest Network Plugin

16.2.5.2. Installing the Client Info Plugin

The Client Info Plugin is installed by default with a standard installation in the Catalog application.

16.2.5.3. Configuring the Client Info Plugin

The Client Info Plugin has no configurable properties.

16.2.6. Content URI Access Plugin

The Content URI Access Plugin prevents a Metacard’s resource URI from being overridden by an
incoming UpdateRequest.

16.2.6.1. Installing the Content URI Access Plugin

The Content URI Access Plugin is installed by default with a standard installation in the Catalog
application.

16.2.6.2. Configuring the Content URI Access Plugin

The Content URI Access Plugin has no configurable properties.

315

16.2.7. Event Processor

The Event Processor creates, updates, and deletes subscriptions for event notification.
These subscriptions optionally specify a filter criteria so that only events of interest to the subscriber
are posted for notification.

As metacards are created, updated, and deleted, the Catalog’s Event Processor is invoked (as a post-
ingest plugin) for each of these events. The Event Processor applies the filter criteria for each
registered subscription to each of these ingest events to determine if they match the criteria.

For more information on creating subscriptions, see Creating a Subscription.

16.2.7.1. Installing the Event Processor

The Event Processor is installed by default with a standard installation in the Catalog application.

16.2.7.2. Configuring the Event Processor

The Event Processor has no configurable properties.

16.2.7.3. Usage Limitations of the Event Processor

The Standard Event processor currently broadcasts federated events and should not. It should only
broadcast events that were generated locally, all other events should be dropped. See DDF-3151 for
status.

16.2.8. Expiration Date Pre-Ingest Plugin

The Expiration Date plugin adds or updates expiration dates which can be used later for archiving old
data.

16.2.8.1. Installing the Expiration Date Pre-Ingest Plugin

The Expiration Date Pre-Ingest Plugin is not installed by default with a standard installation. To install:

1. Navigate to the Admin Console.

2. Select the Catalog application.

3. Select the Configuration tab.

4. Select the Expiration Data Pre-Ingest Plugin.

16.2.8.2. Configuring the Expiration Date Pre-Ingest Plugin

To configure the Expiration Date Pre-Ingest Plugin:

1. Navigate to the Admin Console.

316

https://codice.atlassian.net/browse/DDF-3151

2. Select the Catalog application.
3. Select the Configuration tab.

4. Select the Expiration Date Pre-Ingest Plugin.

See Expiration Date Plugin configurations for all possible configurations.

16.2.9. Filter Plugin

The Filter Plugin performs filtering on query responses as they pass through the framework.

Each metacard result can contain security attributes that are pulled from the metadata record after
being processed by a PolicyPlugin that populates this attribute. The security attribute is a Map
containing a set of keys that map to lists of values. The metacard is then processed by a filter plugin
that creates a KeyValueCollectionPermission from the metacard’s security attribute. This permission is
then checked against the user subject to determine if the subject has the correct claims to view that
metacard. The decision to filter the metacard eventually relies on the installed Policy Decision Point
(PDP). The PDP that is being used returns a decision, and the metacard will either be filtered or
allowed to pass through.

How a metacard gets filtered is left up to any number of FilterStrategy implementations that might be
installed. Each FilterStrategy will return a result to the filter plugin that says whether or not it was able
to process the metacard, along with the metacard or response itself. This allows a metacard or entire
response to be partially filtered to allow some data to pass back to the requester. This could also
include filtering any products sent back to a requester.

The security attributes populated on the metacard are completely dependent on the type of the
metacard. Each type of metacard must have its own PolicyPlugin that reads the metadata being
returned and then returns the appropriate attributes.

Example (represented as simple XML for ease of understanding):

<metacard>
<security>
<map>
<entry assertedAttribute1="A,B" />
<entry assertedAttribute2="X,Y" />
<entry assertedAttribute3="USA,GBR" />
<entry assertedAttribute4="USA,AUS" />
</map>
</security>
</metacard>

317

<user>
<claim name="subjectAttributel">
<value>A</value>
<value>B</value>
</claim>
<claim name="subjectAttribute2">
<value>X</value>
<value>Y</value>
</claim>
<claim name="subjectAttribute3">
<value>USA</value>
</claim>
<claim name="subjectAttribute4">
<value>USA</value>
</claim>
</user>

In the above example, the user’s claims are represented very simply and are similar to how they would
actually appear in a SAML 2 assertion. Each of these user (or subject) claims will be converted to a
KeyValuePermission object. These permission objects will be implied against the permission object
generated from the metacard record. In this particular case, the metacard might be allowed if the
policy is configured appropriately because all of the permissions line up correctly.

16.2.9.1. Installing the Filter Plugin

The Filter Plugin is installed by default with a standard installation in the Catalog application.

16.2.9.2. Configuring the Filter Plugin

The Filter Plugin has no configurable properties.

16.2.10. GeoCoder Plugin

The GeoCoder Plugin is a pre-ingest plugin that is responsible for populating the Metacard’s
Location.COUNTRY_CODE attribute if the Metacard has an associated location. If there is a valid country
code for the Metacard, it will be in ISO 3166-1 alpha-3 format. If the metacard’s country code is already
populated, the plugin will not override it. The GeoCoder relies on either the WebService or Offline
Gazetteer to retrieve country code information.

For a polygon or polygons, this plugin takes the center point of the bounding box

WARNING .
to assign the country code.

318

16.2.10.1. Installing the GeoCoder Plugin

The GeoCoder Plugin is installed by default with the Spatial application, when the WebService or
Offline Gazetteer is started.

16.2.10.2. Configuring the GeoCoder Plugin

To configure the GeoCoder Plugin:

1. Navigate to the Admin Console.
2. Select Spatial application.
3. Select Configuration tab.

4. Select GeoCoder Plugin.
These are the available configurations:

See GeoCoder Plugin configurations for all possible configurations.

16.2.11. Historian Policy Plugin

The Historian Policy Plugin protects metacard history from being edited or deleted by users without
the history role (a http://schemas.xmlsoap.org/ws/2005/05/identity/claims/role of system-history).

16.2.11.1. Installing the Historian Policy Plugin

The Historian is installed by default with a standard installation in the Catalog application.

16.2.11.2. Configuring the Historian Policy Plugin

The Historian Policy Plugin has no configurable properties.

16.2.12. Identification Plugin

The Identification Plugin assigns IDs to registry metacards and adds/updates IDs on create and update.

16.2.12.1. Installing the Identification Plugin

The Identification Plugin is not installed by default in a standard installation. It is installed by default
with the Registry application.

16.2.12.2. Configuring the Identification Plugin

The Identification Plugin has no configurable properties.

319

http://schemas.xmlsoap.org/ws/2005/05/identity/claims/role
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/role
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/role
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/role
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/role
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/role
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/role
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/role
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/role
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/role
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/role
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/role
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/role

16.2.13. JPEG2000 Thumbnail Converter

The JPEG2000 Thumbnail converter creates thumbnails from images ingested in jpeg2000 format.

16.2.13.1. Installing the JPEG2000 Thumbnail Converter

The JPEG2000 Thumbnail Converter is installed by default with a standard installation in the Catalog
application.

16.2.13.2. Configuring the JPEG2000 Thumbnail Converter

The JPEG2000 Thumbnail Converter has no configurable properties.

16.2.14. Metacard Attribute Security Policy Plugin

The Metacard Attribute Security Policy Plugin combines existing metacard attributes to make new
attributes and adds them to the metacard. For example, if a metacard has two attributes,
sourceattributel and sourceattribute2, the values of the two attributes could be combined into a new
attribute, destinationattributel. The sourceattributel and sourceattribute2 are the source attributes
and destinationattributel is the destination attribute.

There are two way to combine the values of source attributes. The first, and most common, is to take
all of the attribute values and put them together. This is called the union. For example, if the source
attributes sourceattributel and sourceattribute? had the values:

MASK, VESSEL

sourceattributel
sourceattribute?2 = WIRE, SACK, MASK

...the union would result in the new attribute destinationattributel:
destinationattributel = MASK, VESSEL, WIRE, SACK

The other way to combine attributes is use the values common to all of the attributes. This is called the
intersection. Using our previous example, the intersection of sourceattributel and sourceattribute?
would create the new attribute destinationattribute

destinationattributel = MASK

because only MASK is common to all of the source attributes.

The policy plugin could also be used to rename attributes. If there is only one source attribute, and the
combination policy is union, then the attribute’s values are effectively renamed to the destination
attribute.

320

16.2.14.1. Installing the Metacard Attribute Security Policy Plugin

The Metacard Attribute Security Policy Plugin is installed by default with a standard installation in the
Catalog application.

See Metacard Attribute Security Policy Plugin configurations for all possible configurations.

16.2.15. Metacard Backup File Storage Provider

The Metacard Backup File Storage Provider is a storage provider that will store backed-up metacards
in a specified file system location.

16.2.15.1. Installing the Metacard Backup File Storage Provider

To install the Metacard Backup File Storage Provider

1. Navigate to the Admin Console.

2. Select the System tab.

3. Select the Features tab.

4. Install the catalog-metacard-backup-filestorage feature.

16.2.15.2. Configuring the Metacard Backup File Storage Provider

To configure the Metacard Backup File Storage Provider

1. Navigate to the Admin Console.
2. Select Catalog application.
3. Select Configuration tab.

4. Select Metacard Backup File Storage Provider.

See Metacard Backup File Storage Provider configurations for all possible configurations.

16.2.16. Metacard Backup S3 Storage Provider

The Metacard Backup S3 Storage Provider is a storage provider that will store backed up metacards in
the specified S3 bucket and key.

16.2.16.1. Installing the Metacard S3 File Storage Provider

To install the Metacard Backup File Storage Provider

1. Navigate to the System tab.

321

2. Select the Features tab.
3. Install the catalog-metacard-backup-s3storage feature.
16.2.16.2. Configuring the Metacard S3 File Storage Provider

To configure the Metacard Backup S3 Storage Provider:

1. Navigate to the Admin Console.
2. Select Catalog application.
3. Select Configuration tab.

4. Select Metacard Backup S3 Storage Provider.

See Metacard Backup S3 Storage Provider configurations for all possible configurations.

16.2.17. Metacard Groomer

The Metacard Groomer Pre-Ingest plugin makes modifications to CreateRequest and UpdateRequest
metacards.

Use this pre-ingest plugin as a convenience to apply basic rules for your metacards.
This plugin makes the following modifications when metacards are in a CreateRequest:

* Overwrites the Metacard.ID field with a generated, unique, 32 character hexadecimal value if
missing or if the resource URI is not a catalog resource URI.

» Sets Metacard.CREATED to the current time stamp if not already set.

» Sets Metacard.MODIFIED to the current time stamp if not already set.

Sets Core.METACARD_CREATED to the current time stamp if not present.

» Sets Core.METACARD_MODIFIED to the current time stamp.
In an UpdateRequest, the same operations are performed as a CreateRequest, except:

* If no value is provided for Metacard.ID in the new metacard, it will be set using the UpdateRequest ID
if applicable.

16.2.17.1. Installing the Metacard Groomer

The Metacard Groomer is included in the catalog-core-plugins feature. It is not recommended to
uninstall this feature.

322

16.2.17.2. Configuring the Metacard Groomer

The Metacard Groomer has no configurable properties.

16.2.18. Metacard Ingest Network Plugin

The Metacard Ingest Network Plugin allows the conditional insertion of new attributes on metacards
during ingest based on network information from the ingest request; including IP address and
hostname.

For the extent of this section, a 'rule' will refer to a configured, single instance of this plugin.

16.2.18.1. Related Components to the Metacard Ingest Network Plugin

* Client Info Plugin

16.2.18.2. Installing the Metacard Ingest Network Plugin

The Metacard Ingest Network Plugin is installed by default during a standard installation in the
Catalog application.

16.2.18.3. Configuring the Metacard Ingest Network Plugin

To configure the Metacard Ingest Network Plugin:

* Navigate to the Admin Console.

* Select the Catalog application.

Select the Configuration tab.

Select the label Metacard Ingest Network Plugin to setup a network rule.
See Metacard Ingest Network Plugin configurations for all possible configurations.

Multiple instances of the plugin can be configured by clicking on its configuration title within the
configuration tab of the Catalog app. Each instance represents a conditional statement, or a 'rule’, that
gets evaluated for each ingest request. For any request that meets the configured criteria of a rule, that
rule will attempt to transform its list of key-value pairs to become new attributes on all metacards in
that request.

The rule is divided into two fields: "Criteria" and "Expected Value". The "Criteria" field features a drop-
down list containing the four elements for which equality can be tested:

* IP Address of where the ingest request came from
* Host Name of where the ingest request came from

* Scheme that the ingest request arrived on, for example, http vs https

323

» Context Path that the ingest request arrived on, for example, /services/catalog

In order for a rule to evaluate to true and the attributes be applied, the value in the "Expected Value"
field must be an exact match to the actual value of the selected criteria. For example, if the selected
criteria is "IP Address" with an expected value of "192.168.0.1", the rule only evaluates to true for ingest
requests coming from "192.168.0.1" and nowhere else.

Check for IPv6

IMPORTANT Verify your system’s IP configuration. Rules using "IP Address" may need to be
written in IPv6 format.

The key-value pairs within each rule should take the following form: "key = value" where the "key" is
the name of the attribute and the "value" is the value assigned to that attribute. Whitespace is ignored
unless it is within the key or value. Multi-valued attributes can be expressed in comma-separated
format if necessary.

Examples of Valid Attribute Assignments

contact.contributor-name = John Doe
contact.contributor-email = john.doe@example.net
language = English

language = English, French, German
security.access-groups = $J202, SR 101, 1S2201

16.2.18.3.1. Useful Attributes

The following table provides some useful attributes that may commonly be set by this plugin:

Table 65. Useful Attributes

Attribute Name Expected Format Multi-Valued
expiration ISO DateTime no
description Any String no
metacard.owner Any String no
language Any String yes
security.access-groups Any String yes
security.access-individuals Any String yes

16.2.18.4. Usage Limitations of the Metacard Ingest Network Plugin

* This plugin only works for ingest (create requests) performed over a network; data ingested via
command line does not get processed by this plugin.

* Any attribute that is already set on the metacard will not be overwritten by the plugin.

324

* The order of execution is not guaranteed. For any rule configuration where two or more rules add
different values for the same attribute, it is undefined what the final value for that attribute will be
in the case where more than one of those rules evaluates to true.

16.2.19. Metacard Resource Size Plugin

This post-query plugin updates the resource size attribute of each metacard in the query results
if there is a cached file for the product and it has a size greater than zero; otherwise, the resource size
is unmodified and the original result is returned.

Use this post-query plugin as a convenience to return query results with accurate resource sizes for
cached products.

16.2.19.1. Installing the Metacard Resource Size Plugin

The Metacard Resource Size Plugin is installed by default with a standard installation.

16.2.19.2. Configuring the Metacard Resource Size Plugin

The Metacard Resource Size Plugin has no configurable properties.

16.2.20. Metacard Validity Filter Plugin

The Metacard Validity Filter Plugin determines whether metacards with validation errors or warnings
are filtered from query results.

16.2.20.1. Related Components to the Metacard Validity Filter Plugin

* Metacard Validity Marker.

16.2.20.2. Installing the Metacard Validity Filter Plugin

The Metacard Validity Filter Plugin is installed by default with a standard installation in the Catalog
application.

16.2.21. Metacard Validity Marker

The Metacard Validity Marker Pre-Ingest plugin modifies the metacards contained in create and
update requests.

The plugin runs each metacard in the CreateRequest and UpdateRequest against each registered
MetacardValidator service.

325

This plugin can make it seem like ingested products are not successfully ingested if a
user does not have permissions to access invalid metacards. If an ingest did not fail,

NOTE there are no errors in the ingest log, but the expected results do not show up after a
query, verify either that the ingested data is valid or that the Metacard Validity Filter
Plugin is configured to show warnings and/or errors.

16.2.21.1. Related Components to the Metacard Validity Marker

* Metacard Validity Filter Plugin.

16.2.21.2. Installing Metacard Validity Marker

This plugin is installed by default with a standard installation in the Catalog application.

16.2.21.3. Configuring Metacard Validity Marker

See Metacard Validity Marker Plugin configurations for all possible configurations.

16.2.21.4. Using Metacard Validity Marker

Use this pre-ingest plugin to validate metacards against metacard validators, which can check schemas,
schematron, or any other logic.

16.2.22. Operation Plugin

The operation plugin validates the subject’s security attributes to ensure they are adequate to perform
the operation.

16.2.22.1. Installing the Operation Plugin

The Operation Plugin is installed by default with a standard installation in the Catalog application.

16.2.22.2. Configuring the Operation Plugin

The Operation Plugin has no configurable properties.

16.2.23. Point of Contact Policy Plugin

The Point of Contact Policy Plugin is a PreUpdate plugin that will check if the point-of-contact attribute
has changed. If it does, then it adds a policy to that metacard’s policy map that cannot be implied. This
will deny such an update request, which essentially makes the point-of-contact attribute read-only.

326

16.2.23.1. Related Components to Point of Contact Policy Plugin

Point of Contact Update Plugin

16.2.23.2. Installing the Point of Contact Policy Plugin

The Point of Contact Policy Plugin is installed by default with a standard installation in the Catalog
application.

16.2.23.3. Configuring the Point of Contact Policy Plugin

The Point of Contact Policy Plugin has no configurable properties.

16.2.24. Processing Post-Ingest Plugin

The Processing Post Ingest Plugin is responsible for submitting catalog Create, Update, and Delete
(CUD) requests to the Processing Framework.

16.2.24.1. Related Components to Processing Post-Ingest Plugin

None.

16.2.24.2. Installing the Processing Post-Ingest Plugin

The Processing Post-Ingest Plugin is not installed by default with a standard installation, but is installed
by default when the in-memory Processing Framework is installed.

16.2.24.3. Configuring the Processing Post-Ingest Plugin

The Processing Post-Ingest Plugin has no configurable properties.

16.2.25. Registry Policy Plugin

The Registry Policy Plugin defines the policies for user access to registry entries and operations.

16.2.25.1. Installing the Registry Policy Plugin

The Registry Policy Plugin is not installed by default on a standard installation. It is installed with the
Registry application.

16.2.25.2. Configuring the Registry Policy Plugin

The Registry Policy Plugin can be configured from the Admin Console:

1. Navigate to the Admin Console.

327

2. Select the Registry application.
3. Select the Configuration tab.

4. Select Registry Policy Plugin.

See Registry Policy Plugin configurations for all possible configurations.

16.2.26. Resource URI Policy Plugin

The Resource URI Policy Plugin configures the attributes required for users to set the resource URI
when creating a metacard or alter the resource URI when updating an existing metacard in the catalog.

16.2.26.1. Installing the Resource URI Policy Plugin

The Resource URI Policy Plugin is installed by default with a standard installation in the Catalog
application.

16.2.26.2. Configuring the Resource URI Policy Plugin

To configure the Resource URI Policy Plugin:

1. Navigate to the Admin Console.
2. Select Catalog application.
3. Select Configuration tab.

4. Select Resource URI Policy Plugin.

See Resource URI Policy Plugin configurations for all possible configurations.

16.2.27. Resource Usage Plugin

The Resource Usage Plugin monitors and limits data usage, and enables cancelling long-running
queries.

16.2.27.1. Installing the Resource Usage Plugin

The Resource Usage Plugin is not installed by default with a standard installation. It is installed with
the Resource Management application.

16.2.27.2. Configuring the Resource Usage Plugin

The Resource Usage Plugin can be configured from the Admin Console:

1. Navigate to the Admin Console.

328

2. Select the Resource Management application.
3. Select the Configuration tab.

4. Select Data Usage.

See Resource Usage Plugin configurations for all possible configurations.

16.2.28. Security Audit Plugin

The Security Audit Plugin is used to allow the auditing of specific metacard attributes. Any time a
metacard attribute listed in the configuration is updated, a log will be generated in the security log.

16.2.28.1. Installing the Security Audit Plugin

The Security Audit Plugin is installed by default with a standard installation in the Catalog application.

16.2.29. Security Logging Plugin

The Security Logging Plugin logs operations to the security log.

16.2.29.1. Installing Security Logging Plugin

The Security Logging Plugin is installed by default in a standard installation in the Security application.

16.2.29.2. Enhancing the Security Log

The security log contains attributes related to the subject acting on the system. To add additional
attributes related to the subject to the logs, append the attribute’s key to the comma separated values
assigned to security.logger.extra_attributesin /etc/custom.system.properties.

16.2.30. Security Plugin

The Security Plugin identifies the subject for an operation.

16.2.30.1. Installing the Security Plugin

The Security Plugin is installed by default with a standard installation in the Catalog application.

16.2.30.2. Configuring the Security Plugin

The Security Plugin has no configurable properties.

329

16.2.31. Source Metrics Plugin

The Source Metrics Plugin captures metrics on catalog operations. These metrics can be viewed and
analyzed using the Metrics Reporting Application in the Admin Console.

16.2.31.1. Related Components to the Source Metrics Plugin

 Catalog Metrics Plugin.

16.2.31.2. Installing the Source Metrics Plugin

The Source Metrics Plugin is installed by default with a standard installation in the Catalog application.

16.2.31.3. Configuring the Source Metrics Plugin

The Source Metrics Plugin has no configurable properties.

16.2.32. Tags Filter Plugin

The Tags Filter Plugin updates queries without filters for tags, and adds a default tag of resource. For
backwards compatibility, a filter will also be added to include metacards without any tags attribute.

16.2.32.1. Related Components to Tags Filter Plugin

None.

16.2.32.2. Installing the Tags Filter Plugin

The Tags Filter Plugin is installed by default with a standard installation in the Catalog application.

16.2.32.3. Configuring the Tags Filter Plugin

The Tags Filter Plugin has no configurable properties.

16.2.33. Video Thumbnail Plugin

The Video Thumbnail Plugin provides the ability to generate thumbnails for video files stored in the
Content Repository.

It is an implementation of both the PostCreateStoragePlugin and PostUpdateStoragePlugin interfaces.
When installed, it is invoked by the Catalog Framework immediately after a content item has been
created or updated by the Storage Provider.

This plugin uses a custom 32-bit LGPL build of FFmpeg (a video processing program) to generate

330

https://ffmpeg.org/

thumbnails. When this plugin is installed, it places the FFmpeg executable appropriate for the current
operating system in <DDF_HOME>/bin_third_party/ffmpeg. When invoked, this plugin runs the FFmpeg
binary in a separate process to generate the thumbnail. The <DDF_HOME>/bin_third_party/ffmpeg
directory is deleted when the plugin is uninstalled.

NOTE Prebuilt FFmpeg binaries are provided for Linux, Mac, and Windows only.

16.2.33.1. Installing the Video Thumbnail Plugin

The Video Thumbnail Plugin is installed by default with a standard installation in the Catalog
application.

16.2.33.2. Configuring the Video Thumbnail Plugin

To configure the Video Thumbnail Plugin:

1. Navigate to the Admin Console.

2. Select the Catalog application.

3. Select the Configuration tab.

4. Select the Video Thumbnail Plugin.

See Video Thumbnail Plugin configurations for all possible configurations.

16.2.34. Workspace Access Plugin

The Workspace Access Plugin prevents non-owner users from changing workspace permissions.

16.2.34.1. Related Components to The Workspace Access Plugin
» Workspace Sharing Policy Plugin.
» Workspace Pre-Ingest Plugin.
* Workspace Extension.

16.2.34.2. Installing the Workspace Access Plugin

The Workspace Access Plugin is installed by default with a standard installation in the Catalog
application.

16.2.34.3. Configuring the Workspace Access Plugin

The Workspace Access Plugin has no configurable properties.

331

16.2.35. Workspace Pre-Ingest Plugin

The Workspace Pre-Ingest Plugin verifies that a workspace has an associated email to enable sharing
and assigns that email as "owner™".

16.2.35.1. Related Components to The Workspace Pre-Ingest Plugin

* Workspace Sharing Policy Plugin.
» Workspace Access Plugin.

* Workspace Extension.

16.2.35.2. Installing the Workspace Pre-Ingest Plugin

The Workspace Pre-Ingest Plugin is installed by default with a standard installation in the Catalog
application.

16.2.35.3. Configuring the Workspace Pre-Ingest Plugin

The Workspace Pre-Ingest Plugin has no configurable properties.

16.2.36. Workspace Sharing Policy Plugin

The Workspace Sharing Policy Plugin collects attributes for a workspace to identify the appropriate
policy to apply to allow sharing.

16.2.36.1. Related Components to The Workspace Sharing Policy Plugin
» Workspace Access Plugin.
» Workspace Pre-Ingest Plugin.
* Workspace Extension.

16.2.36.2. Installing the Workspace Sharing Policy Plugin

The Workspace Sharing Policy Plugin is installed by default with a standard installation in the Catalog
application.

16.2.36.3. Configuring the Workspace Sharing Policy Plugin

The Workspace Sharing Policy Plugin has no configurable properties.

332

16.2.37. XML Attribute Security Policy Plugin

The XML Attribute Security Policy Plugin parses XML metadata contained within a metacard for
security attributes on any number of XML elements in the metadata. The configuration for the plugin
contains one field for setting the XML elements that will be parsed for security attributes and the other
two configurations contain the XML attributes that will be pulled off of those elements. The Security
Attributes (union) field will compute the union of values for each attribute defined and the Security
Attributes (intersection) field will compute the intersection of values for each attribute defined.

16.2.37.1. Installing the XML Attribute Security Policy Plugin

The XML Attribute Security Policy Plugin is installed by default with a standard installation in the
Security application.

17. Data

Endpoints
Operations m
Transformers Federation Sources
Catalog Framework
Eventing
Catalog
Plugins Resources

Catalog Provider

Storage Provider

Catalog Architecture Diagram: Data

The Catalog stores and translates Metadata, which can be transformed into many data formats, shared,
and queried. The primary form of this metadata is the metacard. A Metacardis a container for
metadata. CatalogProviders accept Metacards as input for ingest, and Sources search for metadata and
return matching Results that include Metacards.

17.1. Metacards

A metacard is a single instance of metadata in the Catalog (an instance of a metacard type) which

333

generally contains general information about the product, such as the title of the product, the product’s
geo-location, the date the product was created and/or modified, the owner or producer, and/or the
security classification.

17.1.1. Metacard Type

A metacard type indicates the attributes available for a particular metacard. It is a model used to
define the attributes of a metacard, much like a schema.

A metacard type indicates the attributes available for a particular type of data. For example, an image
may have different attributes than a PDF document, so each could be defined to have their own
metacard type.

17.1.1.1. Default Metacard Type and Attributes

Most metacards within the system are created using the default metacard type or a metacard type
based on the default type. The default metacard type of the system can be programmatically retrieved
by calling ddf.catalog.data.impl.MetacardImpl.BASIC_METACARD. The mname of the default
MetacardType can be retrieved from ddf.catalog.data.MetacardType.DEFAULT_METACARD_TYPE_NAME.

The default metacard type has the following required attributes. Though the following attributes are
required on all metacard types, setting their values is optional except for ID.

Core Attributes

It is highly recommended when referencing a default attribute name to use the
ddf.catalog.data.types.* interface constants whenever possible. Mapping to a

NOTE normalized taxonomy allows for higher quality transformations between different
formats and for improved federation. This neutral profile facilitates improved search
and discovery across disparate data types.

Every Source should at the very least return an ID attribute according to Catalog
WARNING API. Other fields may or may not be applicable, but a unique ID must be returned
by a source.

17.1.1.2. Extensible Metacards

Metacard extensibility is achieved by creating a new MetacardType that supports attributes in addition
to the required attributes listed above.

Required attributes must be the base of all extensible metacard types.

334

Not all Catalog Providers support extensible metacards. Nevertheless, each
Catalog Provider should at least have support for the default MetacardType; i.e., it
should be able to store and query on the attributes and attribute formats specified
by the default metacard type. Catalog providers are neither expected nor required
to store attributes that are not in a given metacard’s type.

WARNING

Consult the documentation of the Catalog Provider in use for more information on
its support of extensible metacards.

Often, the BASIC_METACARD MetacardType does not provide all the functionality or attributes necessary for
a specific task. For performance or convenience purposes, it may be necessary to create custom
attributes even if others will not be aware of those attributes. One example could be if a user wanted to
optimize a search for a date field that did not fit the definition of CREATED, MODIFIED, EXPIRATION,
or EFFECTIVE. The user could create an additional java.util.Date attribute in order to query the
attribute separately.

Metacard objects are extensible because they allow clients to store and retrieve standard and custom
key/value Attributes from the Metacard. All Metacards must return a MetacardType object that
includes an AttributeDescriptor for each Attribute, indicating it's key and value type.
AttributeType support is limited to those types defined by the Catalog.

New MetacardType implementations can be made by implementing the MetacardType interface.

17.1.2. Metacard Type Registry

The MetacardTypeRegistry is experimental. While this component has been tested
WARNING and is functional, it may change as more information is gathered about what is
needed and as it is used in more scenarios.

The MetacardTypeRegistry allows DDF components, primarily catalog providers and sources, to make
available the MetacardTypes that they support. It maintains a list of all supported MetacardTypes in the
CatalogFramework, so that other components such as Endpoints, Plugins, and Transformers can make
use of those MetacardTypes. The MetacardType is essential for a component in the CatalogFramework to
understand how it should interpret a metacard by knowing what attributes are available in that
metacard.

For example, an endpoint receiving incoming metadata can perform a lookup in the
MetacardTypeRegistry to find a corresponding MetacardType. The discovered MetacardType will then be
used to help the endpoint populate a metacard based on the specified attributes in the MetacardType.
By doing this, all the incoming metadata elements can then be available for processing, cataloging, and
searching by the rest of the CatalogFramework.

MetacardTypes should be registered with the MetacardTypeRegistry. The MetacardTypeRegistry makes
those MetacardTypes available to other DDF CatalogFramework components. Other components that need
to know how to interpret metadata or metacards should look up the appropriate MetacardType from the

335

registry. By having these MetacardTypes available to the CatalogFramework, these components can be
aware of the custom attributes.

The MetacardTypeRegistry is accessible as an OSGi service. The following blueprint snippet shows how
to inject that service into another component:

MetacardTypeRegistry Service Injection

<bean id="sampleComponent" class="ddf.catalog.SampleComponent">
<argument ref="metacardTypeRegistry" />
</bean>

<!-- Access MetacardTypeRegistry -->
<reference id="metacardTypeRegistry" interface="ddf.catalog.data.MetacardTypeRegistry"/>

The reference to this service can then be used to register new MetacardTypes or to lookup existing ones.

Typically, new MetacardTypes will be registered by CatalogProviders or sources indicating they know
how to persist, index, and query attributes from that type. Typically, Endpoints or InputTransformers
will use the lookup functionality to access a MetacardType based on a parameter in the incoming
metadata. Once the appropriate MetacardType is discovered and obtained from the registry, the
component will know how to translate incoming raw metadata into a DDF Metacard.

17.1.3. Attributes

An attribute is a single field of a metacard, an instance of an attribute type. Attributes are typically
indexed for searching by a source or catalog provider.

17.1.3.1. Attribute Types

An attribute type indicates the attribute format of the value stored as an attribute. It is a model for an
attribute.

17.1.3.1.1. Attribute Format

An enumeration of attribute formats are available in the catalog. Only these attribute formats may be
used.

Table 66. Attribute Formats

AttributeFormat Description

BINARY Attributes of this attribute format must have a
value that is a Java byte[] and
AttributeType.getBinding() should return
(lass<Array>of byte.

BOOLEAN Attributes of this attribute format must have a
value that is a Java boolean.

336

AttributeFormat Description

DATE Attributes of this attribute format must have a
value that is a Java date.

DOUBLE Attributes of this attribute format must have a
value that is a Java double.

FLOAT Attributes of this attribute format must have a
value that is a Java float.

GEOMETRY Attributes of this attribute format must have a
value that is a WKT-formatted Java string.

INTEGER Attributes of this attribute format must have a
value that is a Java integer.

LONG Attributes of this attribute format must have a
value that is a Java long.

OBJECT Attributes of this attribute format must have a
value that implements the serializable interface.

SHORT Attributes of this attribute format must have a
value that is a Java short.

STRING Attributes of this attribute format must have a
value that is a Java string and treated as plain text.

XML Attributes of this attribute format must have a
value that is a XML-formatted Java string.

17.1.3.1.2. Attribute Naming Conventions

Catalog taxonomy elements follow the naming convention of group-or-namespace.specific-term, except
for extension fields outside of the core taxonomy. These follow the naming convention of ext.group-or-
namespace.specific-term and must be namespaced. Nesting is not permitted.

17.1.3.2. Result

A single "hit" included in a query response.
A result object consists of the following:

e ametacard.
e arelevance score if included.

» distance in meters if included.

17.1.4. Creating Metacards

The quickest way to create a Metacard is to extend or construct the MetacardImpl object. MetacardImpl is
the most commonly used and extended Metacard implementation in the system because it provides a
convenient way for developers to retrieve and setAttributes without having to create a

337

new MetacardType (see below). MetacardImpl uses BASIC_METACARD as its MetacardType.

17.1.4.1. Limitations

A given developer does not have all the information necessary to programmatically interact with any
arbitrary source. Developers hoping to query custom fields from extensible Metacards of
other sources cannot easily accomplish that task with the current API. A developer cannot question a
source for all its queryable fields. A developer only knows about the MetacardTypes which that
individual developer has used or created previously.

The only exception to this limitation is the Metacard.ID field, which is required in every Metacard that is
stored in a source. A developer can always request Metacards from a source for which that developer
has the Metacard.ID value. The developer could also perform a wildcard search on the Metacard.ID field
if the source allows.

17.1.4.2. Processing Metacards

As Metacard objects are created, updated, and read throughout the Catalog, care should be taken by all
catalog components to interrogate the MetacardType to ensure that additional Attributes are processed
accordingly.

17.1.4.3. Basic Types

The Catalog includes definitions of several basic types all found in the ddf.catalog.data.BasicTypes
class.

Table 67. Basic Types

Name Type Description

BASIC_METACARD MetacardType Represents all required
Metacard Attributes.

BINARY_TYPE AttributeType A Constant for an

AttributeType with AttributeType
.AttributeFormat.BINARY.

BOOLEAN_TYPE AttributeType A Constant for an
AttributeType with AttributeType
.AttributeFormat.BOOLEAN.

DATE_TYPE AttributeType A Constant for an
AttributeType with AttributeType
.AttributeFormat.DATE.

DOUBLE_TYPE AttributeType A Constant for an
AttributeType with AttributeType
.AttributeFormat.DOUBLE.

FLOAT_TYPE AttributeType A Constant for an
AttributeType with AttributeType
.AttributeFormat.FLOAT.

338

Name
GEO_TYPE

INTEGER_TYPE
LONG_TYPE
OBJECT_TYPE
SHORT_TYPE
STRING_TYPE

XML_TYPE

18. Operations

Type
AttributeType

AttributeType

AttributeType

AttributeType

AttributeType

AttributeType

AttributeType

Description

A Constant for an
AttributeType with AttributeType
JAttributeFormat.GEOMETRY.

A Constant for an
AttributeType with AttributeType
.AttributeFormat.INTEGER.

A Constant for an
AttributeType with AttributeType
JAttributeFormat.LONG.

A Constant for an
AttributeType with AttributeType
.AttributeFormat.0BJECT.

A Constant for an
AttributeType with AttributeType
.AttributeFormat.SHORT.

A Constant for an
AttributeType with AttributeType
.AttributeFormat.STRING.

A Constant for an
AttributeType with AttributeType
AttributeFormat.XML.

[

Endpoints

Data

Transformers

Catalog
Plugins

Catalog Framework

Federation

Sources

Eventing

Resources

Catalog Provider

Storage Provider

339

The Catalog provides the capability to query, create, update, and delete metacards; retrieve resources;
and retrieve information about the sources in the enterprise.

Each of these operations follow a request/response paradigm. The request is the input to the operation
and contains all of the input parameters needed by the Catalog Framework’s operation to
communicate with the Sources. The response is the output from the execution of the operation that is
returned to the client, which contains all of the data returned by the sources. For each operation there
is an associated request/response pair, e.g., the QueryRequest and QueryResponse pair for the Catalog
Framework’s query operation.

All of the request and response objects are extensible in that they can contain additional key/value
properties on each request/response. This allows additional capability to be added without changing
the Catalog API, helping to maintain backwards compatibility.

19. Resources

Endpoints

Operations Data

Transformers Federation Sources
Catalog Framework

Eventing
Catalog

Plugins Resources

Catalog Provider

Storage Provider

Resources Architecture
Resources are the data that is represented by the cataloged metadata in DDF.

Metacards are used to describe those resources through metadata. This metadata includes the time the
resource was created, the location where the resource was created, etc. A DDF Metacard contains
the getResourcelri method, which is used to locate and retrieve its corresponding resource.

340

. Cliems |
Endpoints \
Operations m
‘ Transformers
Catalog Framework ‘ Storage Plugins
Storage Provider
LEGEND
Content [DDF Component]
Repository
:’ External Component !

Content Data Component Architecture

19.1. Content Item

Contentltem is the domain object populated by the Storage Provider that represents the information
about the content to be stored or content that has been stored in the Storage Provider. A ContentItem
encapsulates the content’s globally unique ID, mime type, and input stream (i.e., the actual content).
The unique ID of a ContentItem will always correspond to a Metacard ID.

19.1.1. Retrieving Resources

When a client attempts to retrieve a resource, it must provide a metacard ID or URI corresponding to a
unique resource. As mentioned above, the resource URI is obtained from aMetacard’s
‘getResourcelri method. The CatalogFramework has three methods that can be used by clients to obtain
a resource: getEnterpriseResource, getResource, and getlLocalResource. The
getEnterpriseResource method invokes the retrieveResource method on a local ResourceReader as well
as all the Federated and Connected Sources inthe DDF enterprise. The second method, getResource, takes
in a source ID as a parameter and only invokes retrieveResource on the specified Source. The third
method invokes retrieveResource on a local ResourceReader.

The parameter for each of these methods in the CatalogFramework is a ResourceRequest. DDF includes
two implementations of ResourceRequest: ResourceRequestById and ResourceRequestByProductUri. Since
these implementations extend OperationImpl, they can pass aMap of generic properties through

341

the CatalogFramework to customize how the resource request is carried out. One example of this is
explained in the Retrieving Resource Options section below. The following is a basic example of how
to create a ResourceRequest and invoke the CatalogFramework resource retrieval methods to process the
request.

Retrieve Resource Example

Map<String, Serializable> properties = new HashMap<String, Serializable>();
properties.put("PropertyKey1", "propertyA"); //properties to customize Resource retrieval
ResourceRequestById resourceRequest = new ResourceRequestById(
"0123456789abcdef0123456789abcdef", properties); //object containing ID of Resource to be
retrieved

String sourceName = "LOCAL_SOURCE"; //the Source ID or name of the local Catalog or a
Federated Source

ResourceResponse resourceResponse; //object containing the retrieved Resource and the
request that was made to get it.

resourceResponse = catalogFramework.getResource(resourceRequest, sourceName); //Source-
based retrieve Resource request

Resource resource = resourceResponse.getResource(); //actual Resource object containing
InputStream, mime type, and Resource name

DDF.catalog.resource.ResourceReader instances can be discovered via the OSGi Service Registry. The
system can contain multiple ResourceReaders. The CatalogFramework determines which one to call based
on the scheme of the resource’s URI and what schemes the ResourceReader supports. The supported
schemes are obtained by aResourceReader’s ‘getSupportedSchemes method. As an example,
one ResourceReader may know how to handle file-based URIs with the scheme file, whereas
another ResourceReader may support HTTP-based URIs with the scheme http.

The ResourceReader or Source is responsible for locating the resource, reading its bytes, adding the
binary data to aResourceimplementation, then returning thatResourcein a ResourceResponse.
The ResourceReader or Source is also responsible for determining the Resource’s name and mime type,
which it sends back in the ‘Resource implementation.

19.1.1.1. BinaryContent

BinaryContent is an object used as a container to store translated or transformed DDF components.
Resource extends BinaryContent and includes a getName method. ° BinaryContent ™ has methods to get
the InputStream, byte array, MIME type, and size of the represented binary data. An implementation
of BinaryContent (BinaryContentImpl) can be found in the Catalog API in the DDF.catalog.data package.

19.1.2. Retrieving Resource Options

Options can be specified on a retrieve resource request made through any of the supporting endpoint.
To specify an option for a retrieve resource request, the endpoint needs to first instantiate
a ResourceRequestByProductUri or a ResourceRequestById. Both of these
ResourceRequest implementations allow a Map of properties to be specified. Put the specified option into

342

the Map under the key RESOURCE_OPTION.

Retrieve Resource with Options

Map<String, Serializable> properties = new HashMap<String, Serializable>();
properties.put("RESOURCE_OPTION", "OptionA");

ResourceRequestById resourceRequest = new ResourceRequestById(
"0123456789abcdef@123456789abcdef", properties);

Depending on the support that theResourceReader or Source provides for options, the
properties’ ‘Map will be checked for the RESOURCE_OPTION entry. If that entry is found, the option will be
handled. If the ResourceReader or Source does not support options, that entry will be ignored.

A new ResourceReader or Source implementation can be created to support options in a way that is most
appropriate. Since the option is passed through the catalog framework as a property,
the ResourceReader or Source will have access to that option as long as the endpoint supports options.

19.1.3. Storing Resources

Resources are saved using aResourcellriter. DDF.catalog.resource.Resourcelriter instances can be
discovered via the OSGi Service Registry. Once retrieved, the Resourcellriter instance provides clients
with a way to store resources and get a corresponding URI that can be used to subsequently retrieve
the resource via a ResourceReader. Simply invoke either of the storeResource methods with a resource
and any potential arguments. The Resourcellriter implementation is responsible for determining
where the resource is saved and how it is saved. This allows flexibility for a resource to be saved in
any one of a variety of data stores or file systems. The following is an example of how to use a generic
implementation of Resourcelriter.

Using a ResourceWriter

InputStream inputStream = <Video_Input_Stream>; //InputStream of raw Resource data
MimeType mimeType = new MimeType("video/mpeg"); //Mime Type or content type of Resource
String name = "Facility_Video"; //Descriptive Resource name

Resource resource = new ResourceImpl(inputStream, mimeType, name);

Map<String, Object> optionalArguments = new HashMap<String, Object>();

ResourceWriter writer = new ResourceWriterImpl();

URI resourceUri; //URI that can be used to retrieve Resource

resourcelri = writer.storeResource(resource, optionalArguments); //Null can be passed in
here

19.2. Resource Components

Resource components are used when working with resources

A resource is a URI-addressable entity that is represented by a metacard. Resources may also be known

343

as products or data.
Resources may exist either locally or on a remote data store.
Examples of resources include:

* NITF image

* MPEG video

* Live video stream
* Audio recording

* Document

A resource object in DDF contains an InputStream with the binary data of the resource. It describes that
resource with a name, which could be a file name, URI, or another identifier. It also contains a mime
type or content type that a client can use to interpret the binary data.

19.3. Resource Readers

A resource reader retrieves resources associated with metacards via URIs. Each resource reader must
know how to interpret the resource’s URI and how to interact with the data store to retrieve the
resource.

There can be multiple resource readers in a Cataloginstance. The Catalog Framework selects the
appropriate resource reader based on the scheme of the resource’s URIL.

In order to make a resource reader available to the Catalog Framework, it must be exported to the
OSGi Service Registry as a DDF.catalog.resource.ResourceReader.

19.3.1. URL Resource Reader

The URLResourceReader is an implementation of ResourceReader which is included in the DDF Catalog.
It obtains a resource given an http, https, or file-based URL. The URLResourceReader will connect to the
provided Resource URL and read the resource’s bytes into an InputStream.

When a resource linked using a file-based URL is in the product cache, the
URLResourceReader’s rootResourceDirectories is not checked when downloading the
product. It is downloaded from the product cache which bypasses the
URLResourceReader. For example, if path /my/valid/path is configured in the
URLResourceReader’s rootResourceDirectories and one downloads the product with
resource-uri file:///my/valid/path/product.txt and then one removes
/my/valid/path from the URLResourceReader’s rootResourceDirectories
configuration, the product will still be accessible via the product cache.

WARNING

344

file:///my/valid/path/product.txt
file:///my/valid/path/product.txt
file:///my/valid/path/product.txt
file:///my/valid/path/product.txt
file:///my/valid/path/product.txt
file:///my/valid/path/product.txt
file:///my/valid/path/product.txt
file:///my/valid/path/product.txt
file:///my/valid/path/product.txt

19.3.1.1. Installing the URL Resource Reader

The URLResourceReader is installed by default with a standard installation in the Catalog application.

19.3.1.2. Configuring Permissions for the URL Resource Reader

Configuring the URL Resource Reader to retrieve files requires adding Security Manager read
permission entries for the directory containing the resources. To add the correct permission entries,
edit the file <DDF_HOME>/security/configurations.policy. In the URL Resource Reader section of the
file, add two new permission for each top-level directory that the Resource Reader needs to access. The
Resource Reader needs one permission to read the directory and another to read its contents.

Adding New Permissions

WARNING After adding permission entries, a system restart is required for them to take

effect.
grant codeBase "file:/org.apache.tika.core/catalog-core-urlresourcereader” { permission
java.io.FilePermission "<DIRECTORY_PATH>", "read"; permission java.io.FilePermission

"<OTHER_DIRECTORY_PATH>", "read"; }

Trailing slashes after <DIRECTORY_PATH> have no effect on the permissions granted. For example,
adding a permission for "${/}test${/}path" and "${/}test${/}path${/}" are equivalent. The recursive forms
"${/}test${/}path${/}-", and "${/}test${/}path${/}${/}-" are also equivalent.

19.3.1.3. Configuring the URL Resource Reader

Configure the URL Resource Reader from the Admin Console.

1. Navigate to the Admin Console.
2. Select the Catalog application.

3. Select the Configuration tab.

4. Select the URL Resource Reader.

See URL Resource Reader configurations for all possible configurations.

19.3.2. Using the URL Resource Reader

URLResourceReader will be used by the Catalog Framework to obtain a resource whose metacard is
cataloged in the local data store. This particular ResourceReader will be chosen by the
CatalogFramework if the requested resource’s URL has a protocol of http, https, or file.

For example, requesting a resource with the following URL will make the Catalog Framework invoke
the URLResourceReader to retrieve the product.

345

Example

file:///home/users/DDF_user/data/example.txt

If a resource was requested with the URLudp://123.45.67.89:80/SampleResourceStream,
the URLResourceReader would not be invoked.

Supported Schemes:
* http
* https
o file
NOTE If a file-based URL is passed to the URLResourceReader, that file path needs to be

accessible by the DDF instance.

19.4. Resource Writers

A resource writer stores a resource and produces a URI that can be used to retrieve the resource at a
later time. The resource URI uniquely locates and identifies the resource. Resource writers can interact
with an underlying data store and store the resource in the proper place. Each implementation can do
this differently, providing flexibility in the data stores used to persist the resources.

Resource Writers should be used within the Content Framework if and when implementing a custom
Storage Provider to store the product. The default Storage Provider that comes with the DDF writes the
products to the file system.

20. Queries

Clients use ddf.catalog.operation.Query objects to describe which metacards are needed from Sources.
Query objects have two major components:

 Filters

* Query Options

A Source uses the Filter criteria constraints to find the requested set of metacards within its domain of
metacards. The Query Options are used to further restrict the Filter’s set of requested metacards.

20.1. Filters

An OGC Filter is a Open Geospatial Consortium (OGC) standard & that describes a query expression in

346

http://www.opengeospatial.org/standards/filter

terms of Extensible Markup Language (XML) and key-value pairs (KVP). The OGC Filter is used to
represent a query to be sent to sources and the Catalog Provider, as well as to represent a Subscription.
The OGC Filter provides support for expression processing, such as adding or dividing expressions in a
query, but that is not the intended use for DDF.

The Catalog Framework does not use the XML representation of the OGC Filter standard. DDF instead
uses the Java implementation provided by GeoTools . GeoTools provides Java equivalent classes for
OGC Filter XML elements. GeoTools originally provided the standard Java classes for the OGC Filter
Encoding 1.0 under the package name org.opengis.filter. The same package name is used today and is
currently used by DDF. Java developers do not parse or view the XML representation of a Filter
in DDF. Instead, developers use only the Java objects to complete query tasks.

Note that the ddf.catalog.operation.Query interface extends the org.opengis.filter.Filter interface,
which means that a Query object is an OGC Java Filter with Query Options.

A Query is an OGC Filter

public interface Query extends Filter

20.1.1. FilterBuilder API

To avoid the complexities of working with the Filter interface directly and implementing the DDF
Profile of the Filter specification, the Catalog includes an API, primarily in DDF.filter, to build Filters
using a fluent API.

To use the FilterBuilder API, an instance of DDF.filter.FilterBuilder should be used via the OSGi
registry. Typically, this will be injected via a dependency injection framework. Once an instance of
FilterBuilder is available, methods can be called to create and combine Filters.

The fluent API is best accessed using an IDE that supports code-completion. For additional

TIP
details, refer to the [Catalog API Javadoc].

20.1.2. Boolean Operators
Filters use a number of boolean operators.

FilterBuilder.allOf(Filter ')

creates a new Filter that requires all provided Filters are satisfied (Boolean AND), either from a List
or Array of Filter instances.

FilterBuilder.anyOf(Filter --+)
creates a new Filter that requires at least one of the provided Filters are satisfied (Boolean OR),
either from a List or Array of Filter instances.

FilterBuilder.not(Filter filter)
creates a new Filter that requires the provided Filter must not match (Boolean NOT).

347

http://geotools.org/

20.1.3. Attribute
Filters can be based on specific attributes.

FilterBuilder.attribute(String attributeName):: begins a fluent API for creating an Attribute-based
Filter, i.e., a Filter that matches on Metacards with Attributes of a particular value.

20.1.4. XPath
Filters can be based on XML attributes.

FilterBuilder.xpath(String xpath):: begins a fluent API for creating an XPath-based Filter, i.e., a Filter
that matches on Metacards with Attributes of type XML that match when evaluating a provided XPath
selector.

Contextual Operators

FilterBuilder.attribute(attributeName).is().like().text(String contextualSearchPhrase);
FilterBuilder.attribute(attributeName).is().like().caseSensitiveText(StringcaseSensitiveC
ontextualSearchPhrase);
FilterBuilder.attribute(attributeName).is().like().fuzzyText(String fuzzySearchPhrase);

21. Metrics

DDF includes a system of data-collection to enable monitoring system health, user interactions, and
overall system performance: Metrics Collection.

The Metrics Collection Application collects data for all of the pre-configured metrics in DDF and stores
them in custom JMX Management Bean (MBean) attributes. Samples of each metric’s data is collected
every 60 seconds and stored in the <DDF_HOME>/data/metrics directory with each metric stored in its
own .rrd file. Refer to the Metrics Reporting Application for how the stored metrics data can be
viewed.

Do not remove the <DDF_HOME>/data/metrics directory or any files in it. If this is

done, all existing metrics data will be permanently lost.
WARNING
Also note that if DDF is uninstalled/re-installed that all existing metrics data will

be permanently lost.

Types of Metrics Collected
Catalog Metrics

Metrics collected about the catalog status.

Source Metrics

Metrics collected per source.

348

21.1. Metrics Collection Application

The Metrics Collection Application is responsible for collecting both Catalog and Source metrics.

Use Metrics Collection to collect historical metrics data, such as catalog query metrics, message latency,
or individual sources' metrics type of data.

21.1.1. Installing Metrics Collection
The Metrics Collection application is installed by default with a standard installation.

The catalog-level metrics are packaged as the catalog-core-metricsplugin feature, and the source-level
metrics are packaged as the catalog-core-sourcemetricsplugin feature.

21.1.2. Configuring Metrics Collection

No configuration is made for the Metrics Collection application. All metrics collected are either pre-
configured in DDF or dynamically created as sources are created or deleted.

21.1.3. Catalog Metrics

Table 68. Catalog Metrics Collected

Metric JMX MBean Name MBean Description
Attribute
Name
Catalog ddf.metrics.catalog:name=Exceptions Count The number of exceptions, of all
Exceptions types, thrown across all catalog
queries executed.
Catalog ddf.metrics.catalog:name=Exceptions Count The total number of Federation
Exceptions .Federation exceptions thrown across all catalog
Federation queries executed.
Catalog ddf.metrics.catalog:name=Exceptions Count The total number of
Exceptions .SourceUnavailable SourceUnavailable exceptions thrown
Source across all catalog queries executed.
Unavailabl These exceptions occur when the
e source being queried is currently not
available.
Catalog ddf.metrics.catalog:name=Exceptions Count Total number of UnsupportedQuery
Exceptions .UnsupportedQuery exceptions thrown across all catalog
Unsupporte queries executed. These exceptions
d Query occur when the query being executed
is not supported or is invalid.
Catalog ddf.metrics.catalog:name=Ingest.Crea Count The number of catalog entries
Ingest ted created in the Metadata Catalog.
Created

349

Metric

Catalog
Ingest
Deleted

Catalog
Ingest
Updated

Catalog
Queries

Catalog
Queries
Compariso
n

Catalog
Queries
Federated

Catalog
Queries
Fuzzy

Catalog
Queries
Spatial

Catalog
Queries
Temporal

Catalog
Queries
Total

Results

Catalog
Queries
Xpath

350

JMX MBean Name

ddf.metrics.catalog:name=Ingest.Dele
ted

ddf.metrics.catalog:name=Ingest.Upd
ated

ddf.metrics.catalog:name=Queries

ddf.metrics.catalog:name=Queries.Co
mparison

ddf.metrics.catalog:name=Queries.Fe
derated

ddf.metrics.catalog:name=Queries.Fu
zzy

ddf.metrics.catalog:name=Queries.Sp
atial

ddf.metrics.catalog:name=Queries.Te
mporal

ddf.metrics.catalog:name=Queries.To
talResults

ddf.metrics.catalog:name=Queries.Xp
ath

MBean Description

Attribute

Name

The Count

number of

catalog

entries

deleted

from the

Metadata

Catalog.

Count The number of catalog entries
updated in the Metadata Catalog.

Count The number of queries attempted.

Count The number of queries attempted
that included a string comparison
criteria as part of the search criteria,
e.g., PropertyIslike,
PropertyIsEqualTo, etc.

Count The number of federated queries
attempted.

Count The number of queries attempted
that included a string comparison
criteria with fuzzy searching enabled
as part of the search criteria.

Count The number of queries attempted
that included a spatial criteria as part
of the search criteria.

Count The number of queries attempted
that included a temporal criteria as
part of the search criteria.

Mean The average of the total number of
results returned from executed
queries. This total results data is
averaged over the metric’s sample
rate.

Count The number of queries attempted

that included a Xpath criteria as part
of the search criteria.

Metric

Catalog
Resource
Retrieval

Services
Latency

JMX MBean Name

ddf.metrics.catalog:name=Resource

ddf.metrics.services:name=Latency

21.1.4. Source Metrics

MBean
Attribute
Name

Count

Mean

Description

The number of resources retrieved.

The response time (in milliseconds)
from receipt of the request at the
endpoint until the response is about
to be sent to the client from the
endpoint. This response time data is
averaged over the metric’s sample
rate.

Metrics are also collected on a per source basis for each configured Federated Source and Catalog
Provider. When the source is configured, the metrics listed in the table below are automatically
created. Metrics are collected for each request(whether enterprise query or a source-specific query).
When the source is deleted (or renamed), the associated metrics' MBeans and Collectors are also
deleted. However, the RRD file in the data/metrics directory containing the collected metrics remain
indefinitely and remain accessible from the Metrics tab in the Admin Console.

In the table below, the metric name is based on the Source’s ID (indicated by <sourceId>).

Table 69. Source Metrics Collected

Metric

Source
<sourceld>
Exceptions

Source
<sourceld>
Queries

Source
<sourceld>
Queries
Total
Results

JMX MBean Name

ddf.metrics.catalog.source:name=<so
urceld>.Exceptions

ddf.metrics.catalog.source:name=<so
urceld>.Queries

ddf.metrics.catalog.source:name=<so
urceld>.Queries.TotalResults

MBean
AttributeN
ame

Count

Count

Mean

Description

A count of the total number of
exceptions, of all types, thrown from
catalog queries executed on this
source.

A count of the number of queries
attempted on this source.

An average of the total number of
results returned from executed
queries on this source.

This total results data is averaged
over the metric’s sample rate.

For example, if a Federated Source was created with a name of fs-1, then the following metrics would
be created for it:

351

o Source Fs1 Exceptions
o Source Fs1 Queries

o Source Fs1 Queries Total Results

If this federated source is then renamed to fs-1-rename, the MBeans and Collectors for the fs-1 metrics
are deleted, and new MBeans and Collectors are created with the new names:

« Source Fs1 Rename Exceptions
« Source Fs1 Rename Queries

o Source Fs1 Rename Queries Total Results

Note that the metrics with the previous name remain on the Metrics tab because the data collected
while the Source had this name remains valid and thus needs to be accessible. Therefore, it is possible
to access metrics data for sources renamed months ago, i.e., until DDF is reinstalled or the metrics data
is deleted from the <DDF_HOME>/data/metrics directory. Also note that the source metrics' names are
modified to remove all non-alphanumeric characters and renamed in camelCase.

21.2. Metrics Reporting Application

The DDF Metrics Reporting Application provides access to historical data in several formats: a graphic,
a comma-separated values file, a spreadsheet, a PowerPoint file, XML, and JSON formats for system
metrics collected while DDF is running. Aggregate reports (weekly, monthly, and yearly) are also
provided where all collected metrics are included in the report. Aggregate reports are available in
Excel and PowerPoint formats.

To use the Metrics Reporting Application:

1. Navigate to the Admin Console.
2. Select the Platform Application.

3. Select the Metrics tab.

With each metric in the list, a set of hyperlinks is displayed under each column. Each column’s header
is displayed with the available time ranges. The time ranges currently supported are 15 minutes, 1
hour, 1 day, 1 week, 1 month, 3 months, 6 months, and 1 year, measured from the time that the
hyperlink is clicked.

All metrics reports are generated by accessing the collected metric data stored in
the <DDF_HOME>/data/metrics directory. All files in this directory are generated by the JmxCollector using
RRD4]J, a Round Robin Database for a Java open source product. All files in this directory will have
the .rrd file extension and are binary files, hence they cannot be opened directly. These files should
only be accessed using the Metrics tab’s hyperlinks. There is one RRD file per metric being collected.
Each RRD file is sized at creation time and will never increase in size as data is collected. One year’s
worth of metric data requires approximately 1 MB file storage.

352

Do not remove the <DDF_HOME>/data/metrics directory or any files in the directory.
If this is done, all existing metrics data will be permanently lost.

WARNING
Also note that if DDF is uninstalled/re-installed, all existing metrics data will be

permanently lost.

Hyperlinks are provided for each metric and each format in which data can be displayed. For example,
the PNG hyperlink for 15m for the Catalog Queries metric maps
to https://{FQDN}:{PORT}/services/internal/metrics/catalogQueries.png?dateOffset=900, = where the
dateOffset=900 indicates the previous 900 seconds (15 minutes) to be graphed.

Note that the date format will vary according to the regional/locale settings for the server.

All of the metric graphs displayed are in PNG format and are displayed on their own page. The user
may use the back button in the browser to return to the Admin Console, or, when selecting the
hyperlink for a graph, they can use the right mouse button in the browser to display the graph in a
separate browser tab or window, which will keep the Admin Console displayed. The user can also
specify custom time ranges by adjusting the URL used to access the metric’s graph. The Catalog Queries
metric data may also be graphed for a specific time range by specifying the startDate and endDate
query parameters in the URL.

For example, to map the Catalog Queries metric data for March 31, 6:00 am, to April 1, 2013, 11:00 am,

(Arizona timezone, which is -07:00) the URL would be:

https://{FQDN}:{PORT}/services/internal/metrics/catalogQueries.png?startDate=2013-03-
31T06:00:00-07:00&endDate=2013-04-01T11:00:00-07:00

Or to view the last 30 minutes of data for the Catalog Queries metric, a custom URL with a
dateOffset=1800 (30 minutes in seconds) could be used:

https://{FQDN}:{PORT}/services/internal/metrics/catalogQueries.png?dateQffset=1800

21.2.1. Metrics Aggregate Reports

The Metrics tab also provides aggregate reports for the collected metrics. These are reports that
include data for all of the collected metrics for the specified time range.

The aggregate reports provided are:

* Weekly reports for each week up to the past four complete weeks from current time. A complete
week is defined as a week from Monday through Sunday. For example, if current time is Thursday,
April 11, 2013, the past complete week would be from April 1 through April 7.

* Monthly reports for each month up to the past 12 complete months from current time. A complete

353

month is defined as the full month(s) preceding current time. For example, if current time is
Thursday, April 11, 2013, the past complete 12 months would be from April 2012 through March
2013.

* Yearly reports for the past complete year from current time. A complete year is defined as the full
year preceding current time. For example, if current time is Thursday, April 11, 2013, the past
complete year would be 2012.

An aggregate report in XLS format would consist of a single workbook (spreadsheet) with multiple
worksheets in it, where a separate worksheet exists for each collected metric’s data. Each worksheet
would display:

* the metric’s name and the time range of the collected data,

* two columns: Timestamp and Value, for each sample of the metric’s data that was collected during
the time range, and

* a total count (if applicable) at the bottom of the worksheet.

An aggregate report in PPT format would consist of a single slideshow with a separate slide for each
collected metric’s data. Each slide would display:

* atitle with the metric’s name.
» the PNG graph for the metric’s collected data during the time range.
* a total count (if applicable) at the bottom of the slide.
Hyperlinks are provided for each aggregate report’s time range in the supported display formats,

which include Excel (XLS) and PowerPoint (PPT). Aggregate reports for custom time ranges can also be
accessed directly via the URL:

https://{FQDN}:{PORT}/services/internal/metrics/report.<format>?startDate=<start_date_val
ue>&endDate=<end_date_value>

where <format> is either x1s or ppt and the <start_date_value> and <end_date_value> specify the custom
time range for the report.

These example reports represent custom aggregate reports. NOTE: all example URLs begin with
https://{FQDN}:{PORT}, which is omitted in the table for brevity.

Table 70. Example Aggregate Reports

Description URL
XLS aggregate report for March 15, 2013 to April /services/internal/metrics/report.x1ls?startDate=
15. 2013 2013-03-15T12:00:00-07:00&endDate=2013-04-
’ 15712:00:00-07:00
XLS aggregate report for last 8 hours /services/internal/metrics/report.xls?date0ffset
=28800

354

Description URL
PPT aggregate report for March 15, 2013 to April /services/internal/metrics/report.ppt?startDate=

2013-03-15T12:00:00-07:00&endDate=2013-04-
15,2013 15T12:00:00-07: 00
PPT aggregate report for last 8 hours /services/internal/metrics/report.ppt?dateOffset
=28800

21.2.2. Viewing Metrics
The Metrics Viewer has reports in various formats.

1. Navigate to the Admin Console.
2. Select the Platform application.

3. Select the Metrics tab.
Reports are organized by timeframe and output format.

Standard time increments: * 15m: 15 Minutes * Th: 1 Hour * 1d: 1 Day * Tw: 1 Week * TM: 1 Month * 3M: 3
Month * 6M: 6 Month * Ty: 1 Year

Custom timeframes are also available via the selectors at the bottom of the page.

Output formats: * PNG * CSV (Comma-separated values) * XLS

Based on the browser’s configuration, either the .x1ls file will be downloaded or

NOTE
automatically displayed in Excel.

22. Action Framework

The Action Framework was designed as a way to limit dependencies between applications (apps) in a
system. For instance, a feature in an app, such as an Atom feed generator, might want to include an
external link as part of its feed’s entries. That feature does not have to be coupled to a REST endpoint to
work, nor does it have to depend on a specific implementation to get a link. In reality, the feature does
not identify how the link is generated, but it does identify whether the link works or does not work
when retrieving the intended entry’s metadata. Instead of creating its own mechanism or adding an
unrelated feature, it could use the Action Framework to query the OSGi container for any service that
can provide a link. This does two things: it allows the feature to be independent of implementations,
and it encourages reuse of common services.

The Action Framework consists of two major Java interfaces in its API:

1. ddf.action.Action

2. ddf.action.ActionProvider

Actions

355

Specific tasks that can be performed as services.

Action Providers

Lists of related actions that a service is capable of performing.

22.1. Action Providers

Included Action Providers
Download Resource ActionProvider

Downloads a resource to the local product cache.

IdP Logout Action Provider
Identity Provider Logout.

Karaf Logout Action

Local Logout.

LDAP Logout Action
Ldap Logout.

Overlay ActionProvider

Provides a metacard URL that transforms the metacard into a geographically aligned image
(suitable for overlaying on a map).

View Metacard ActionProvider

Provides a URL to a metacard.

Metacard Transformer ActionProvider

Provides a URL to a metacard that has been transformed into a specified format.

23. Asynchronous Processing Framework

NOTE This code is experimental. While this interface is functional and tested, it may change
or be removed in a future version of the library.
The Asynchronous Processing Framework is a way to run plugins asynchronously. Generally, plugins
that take a significant amount of processing time and whose results are not immediately required are
good candidates for being asynchronously processed. A Processing Framework can either be run on
the local or remote system. Once the Processing Framework finishes processing incoming requests, it
may submit (Create|Update|Delete)Requests to the Catalog. The type of plugins that a Processing
Framework runs are the Post-Process Plugins. The Post-Process Plugins are triggered by the

356

Processing Post Ingest Plugin, which is a Post-Ingest Plugin. Post-Ingest Plugins are run after the
metacard has been ingested into the Catalog. This feature is uninstalled by default.

The Processing Framework does not support partial updates to the Catalog. This
means that if any changes are made to a metacard in the Catalog between the time

WARNING asynchronous processing starts and ends, those changes will be overwritten by
the ProcessingFramework updates sent back to the Catalog. This feature should
be used with caution.

(Create/Update/Delete) l
eques $

‘ CatalogFramework ‘

(Create/Update/Delete) l
Response

‘ ProcessRequest{Processitem}

'

‘ PostingestPlugin

PostProcessPlugin 1

{Processitem}

PostProcessPlugin 2

{Processitem}

PostProcessPlugin N

1 (Create/Update/Delete)Request

Processing Framework Architecture

The Asynchronous Processing Framework API Interfaces

1. org.codice.ddf.catalog.async.processingframework.api.internal.ProcessingFramework
org.codice.ddf.catalog.async.plugin.api.internal.PostProcessPlugin
org.codice.ddf.catalog.async.data.api.internal.ProcessItem
org.codice.ddf.catalog.async.data.api.internal.ProcessCreateltem
org.codice.ddf.catalog.async.data.api.internal.ProcessUpdateltem
org.codice.ddf.catalog.async.data.api.internal.ProcessDeleteltem
org.codice.ddf.catalog.async.data.api.internal.ProcessRequest

org.codice.ddf.catalog.async.data.api.internal.ProcessResoure

© N o Uk W

org.codice.ddf.catalog.async.data.api.internal.ProcessResourceltem

357

PostProcessPlugin

ProcessRequest{ProcessCreateltem} process(ProcessCreateltem)
ProcessRequest{ProcessUpdateltem} process(ProcessUpdateltem)
ProcessRequest{ProcessDeleteltem} process(ProcessDeleteltem)

ProcessRequest{T extends Processitem}

List{T} getProcessitems()

Processitem

Metacard getMetacard()

ProcessResourceltem

ProcessResource getProcessResource()
Boolean isMetacardModified()

t

ProcessUpdateltem ProcessDeleteltem

Metacard getOldMetacard()

Processing Framework Interface Diagram

ProcessingFramework

The ProcessingFramework is responsible for processing incoming ProcessRequests that contain a
ProcessItem. A ProcessingFramework should never block. It receives its ProcessRequests from a
PostIngestPlugin on all CUD operations to the Catalog. In order to determine whether or not
asynchronous processing is required by the ProcessingFramework, the ProcessingFramework should mark
any request it has submitted back the Catalog, otherwise a processing loop may occur. For example, the
default In-Memory Processing Framework adds a POST_PROCESS_COMPLETE flag to the Catalog CUD
request after processing. This flag is checked by the ProcessingPostIngestPlugin before a
ProcessRequest is sent to the ProcessingFramework. For an example of a ProcessingFramework, please refer
to the org.codice.ddf.catalog.async.processingframework.impl.InMemoryProcessingFramework.

ProcessRequest

A ProcessRequest contains a list of ProcessItems for the ProcessingFramework to process. Once a
ProcessRequest has been processed by a ProcessingFramework, the ProcessingFramework should mark the
ProcessRequest as already been processed, so that it does not process it again.

PostProcessPlugin

The PostProcessPlugin is a plugin that will be run by the ProcessingFramework. It is capable of processing
ProcessCreateltems, ProcessUpdateltems, and ProcessDeleteltems.

358

Processltem

WARNING Do not implement ProcessItem directly; it is intended for use only as a common
base interface for ProcessResourceltem and ProcessDeleteltem.

The ProcessItem is contained by a ProcessRequest. It can be either a ProcessCreateltem,
ProcessUpdateltem, or ProcessDeleteltem.

ProcessResource

The ProcessResource is a piece of content that is attached to a metacard. The piece of content can be
either local or remote.

ProcessResourceltem

The ProcessResourceltem indicates that the item being processed may have a ProcessResource associated
with it.

ProcessResourceltem Warning

WARNING Do not implement ProcessResourceltem directly; it is intended for use only as a
common base interface for ProcessCreateItem and ProcessUpdateltem.

ProcessCreateltem

The ProcessCreateltem is an item for a metacard that has been created in the Catalog. It contains the
created metacard and, optionally, a ProcessResource.

ProcessUpdateltem

The ProcessUpdateltem is an item for a metacard that has been updated in the Catalog. It contains the
original metacard, the updated metacard and, optionally, a ProcessResource.

ProcessDeleteltem

The ProcessDeleteltem is an item for a metacard that has been deleted in the Catalog. It contains the
deleted metacard.

24. Eventing

359

Endpoints

Operations Data

Transformers Federation Sources
Catalog Framework

Catalog

Plugins Resources

Catalog Provider

Storage Provider

Eventing Architecture

The Eventing capability of the Catalog allows endpoints (and thus external users) to create a "standing
query" and be notified when a matching metacard is created, updated, or deleted.

Notably, the Catalog allows event evaluation on both the previous value (if available) and new value of
a Metacard when an update occurs.

Eventing allows DDFs to receive events on operations (e.g. create, update, delete) based on particular
queries or actions. Once subscribed, users will receive notifications of events such as update or create
on any source.

24.1. Eventing Components
The key components of DDF Eventing include:

» Subscription
* Delivery Method

e Event Processor

25. Migration API

This code is experimental. While the interfaces and classes provided are functional and

NOTE . . .
tested, they may change or be removed in a future version of the library.

360

DDF currently has an experimental API for making bundles migratable. Interfaces and classes in
platform/migration/platform-migratable-api are used by the system to identify bundles that provide
implementations for export and import operations.

The migration API provides a mechanism for bundles to handle exporting data required to clone or
backup/restore a DDF system. The migration process is meant to be flexible, so an implementation of
org.codice.ddf.migration.Migratable can handle exporting data for a single bundle or groups of
bundles such as applications. For example, the
org.codice.ddf.platform.migratable.impl.PlatformMigratable handles exporting core system files for
the Platform application. Each migratable must provide a unique identifier via its getId() method used
by the migration API to uniquely identify the migratable between exports and imports.

DDF defines migratables of its own to export/import all configurations stored in
org.osgi.service.cm.ConfigurationAdmin.

These do not need to be handled by implementations of org.codice.ddf.migration.Migratable.
An export and an import operation can be performed through the Command Console.

When an export operation is processed, the migration API will do a look-up for all registered OSGi
services that are implementing Migratable and call their doExport() method. As part of the exported
data, information about the migratable as required by the
org.codice.ddf.platform.services.common.Describable interface will be included. In particular the
version string returned will help the migration API identify the version of the exported data from the
corresponding migratable and must be provided as a non-blank string.

When an import operation is processed when the current DDF version matches the exported @DDF
version, the migration API will do another look-up for all registered OSGi services that are
implementing Migratable and call their doImport() or doIncompatibleImport() methods based on
whether the recorded version string at export time is equal to the version string currently provided by
the migratable or not. The doMissingImport() method will be called instead of one of the other two
methods when the migration API detects that the corresponding migratable data is missing from the
exported data. Any migratables that are tagged using the OptionalMigratable tag interface will
automatically be skipped unless otherwise specified when the import phase is initiated.

When an import operation is processed when the current DDF version does not the exported @DDF
version, the migration API will do a look-up for all registered OSGi services that are implementing
Migratable and call their doVersionUpgradeImport() method.

The services that implement the migratable interface will be called one at a time based on their service
ranking order, and do not need to be thread safe. A bundle or a feature can have as many services
implementing the interfaces as needed.

25.1. The Migration API Interfaces and Classes

1. org.codice.ddf.migration.Migratable
2. org.codice.ddf.migration.OptionalMigratable

361

org.codice.ddf.migration.MigrationContext
org.codice.ddf.migration.ExportMigrationContext
org.codice.ddf.migration.ImportMigrationContext
org.codice.ddf.migration.MigrationEntry
org.codice.ddf.migration.ExportMigrationEntry

org.codice.ddf.migration.ImportMigrationEntry

© ® N ok W

org.codice.ddf.migration.MigrationOperation
10. org.codice.ddf.migration.MigrationReport

11. org.codice.ddf.migration.MigrationMessage

12. org.codice.ddf.migration.MigrationException
13. org.codice.ddf.migration.MigrationWarning

14, org.codice.ddf.migration.MigrationInformation

15. org.codice.ddf.migration.MigrationSuccessfulInformation

25.1.1. Migratable

The contract for a migratable is stored here. This is the only interface that should be implemented by
implementers and registered as an OSGi service. All other interfaces will be implemented by the
migration API that provides support for migratables.

The org.codice.ddf.migration.Migratable interface defines these methods:

« String getId()

« String getVersion()

« String getTitle()

« String getDescription()

« String getOrganization()

« void doExport(ExportMigrationContext context)

« void doImport(ImportMigrationContext context)

« void doIncompatibleImport(ImportMigrationContext context)

« void doVersionUpgradeImport(ImportMigrationContext context)

« void doMissingImport(ImportMigrationContext context)

The getId() method returns a unique identifier for this migratable that must remain constant between
the export and the import operations in order for the migration API to correlate the exported data with
the migratable during the import operation. It must be unique across all migratables.

The getVersion() method returns a unique version string which is meant to identify the version of the
data exported or supported at import time by the migratable. It cannot be blank and its format is left to
the migratable. The only noticeable requirement is that when the string compares equal using the
String.equals() method, the migration API will call doImport() instead of doIncompatibleImport() to
restore previously exported data for the migratable.

The getTitle() method returns a simple title for the migratable.

The getDescription() method returns a short description of the type of data exported by the

362

migratable.

The getOrganization() method provides the name of the organization responsible for the migratable.
The doExport() method is called by the migration API along with a context for the current export
operation to store data.

The doImport() method is called by the migration API along with a context for the current import
operation when the version of exported data matches the current version reported by the migratable.
This method can be used to restore previously exported data.

The doIncompatibleImport() method is called to restore incompatible data which might require
transformation. It is provided a context for the current import operation and the previously exported
version. It can then proceed with restoring incompatible data which might require transformation.

The doVersionUpgradeImport() method is called to restore data from a different DDF version which
might require transformation. It is provided a context for the current import operation and the
previously exported version.

Finally, the doMissingImport() method will be called along with the context for the current import
operation when data had not been exported for the corresponding migratable. This will be the case
when a migratable is later introduced in the software distribution.

In order to create a Migratable for a module of the system, the org.codice.ddf.migration.Migratable
interface must be implemented and the implementation must be registered under the
org.codice.ddf.migration.Migratable interface as an OSGi service in the OSGi service registry. Creating
an OSGi service allows for the migration API to lookup all implementations of
org.codice.ddf.migration.Migratable and command them to export or import.

25.1.2. OptionalMigratable

This interface is designed as a tagged interface to identify optional migratables. An optional migratable
will be skipped by default during the import phase. It can still be manually marked as mandatory
when initiating the import phase.

25.1.3. MigrationContext

The org.codice.ddf.migration.MigrationContext provides contextual information about an operation in
progress for a given migratable. This is a sort of sandbox that is unique to each migratable. This
interface defines the following methods:

« MigrationReport getReport()
« String getId()
« Optional<String> getMigratableVersion()

The getReport() method returns a migration report that can be used to record messages while
processing an export or an import operation.

The getId() method returns the identifier for the currently processing migratable. The
getMigratableVersion() method returns the version for the currently processing migratable.

363

25.1.4. ExportMigrationContext

The export migration context provides methods for creating new migration entries and system
property referenced migration entries to track exported migration files for a given migratable while
processing an export migration operation. It defines the following methods:

o Optional<ExportMigrationEntry> getSystemPropertyReferencedEntry(String name)

o Optional<ExportMigrationEntry> getSystemPropertyReferencedEntry(String name,
BiPredicate<MigrationReport, String> validator)

o ExportMigrationEntry getEntry(Path path)

o Stream<ExportMigrationEntry> entries(Path path)

o Stream<ExportMigrationEntry> entries(Path path, PathMatcher filter)
o Stream<ExportMigrationEntry> entries(Path path, boolean recurse)

o Stream<ExportMigrationEntry> entries(Path path, boolean recurse, PathMatcher filter)

The getSystemPropertyReferencedEntry() methods create a migration entry to track a file referenced by
a given system property value.

The getEntry() method creates a migration entry given the path for a specific file or directory.

The entries() methods create multiple entries corresponding to all files recursively (or not) located
underneath a given path with an optional path matcher to filter which files to create entries for.

Once an entry is created, it is not stored with the exported data. It is the migratable’s responsibility to
store the data using one of the entry’s provided methods. Entries are uniquely identified using a
relative path and are specific to each migratable meaning that an entry with the same path in two
migratables will not conflict with each other. Each migratable is given its own context (a.k.a. sandbox)
to work with.

25.1.5. ImportMigrationContext

The import migration context provides methods for retrieving migration entries and system property
referenced migration entries corresponding to exported files for a given migratable while processing
an import migration operation. It defines the following methods:

o Optional<ImportMigrationEntry> getSystemPropertyReferencedEntry(String name)
o ImportMigrationEntry getEntry(Path path)

o Stream<ImportMigrationEntry> entries(Path path)

o Stream<ImportMigrationEntry> entries(Path path, PathMatcher filter)

The getSystemPropertyReferencedEntry() method retrieves a migration entry for a file that was
referenced by a given system property value.

The getEntry() method retrieves a migration entry given the path for a specific file or directory.

The entries() methods retrieve multiple entries corresponding to all exported files recursively located
underneath a given relative path with an optional path matcher to filter which files to retreive entries
for.

Once an entry is retrieved, its exported data is not restored. It is the migratable’s responsibility to

364

restore the data using one of the entry’s provided methods. Entries are uniquely identified using a
relative path and are specific to each migratable meaning that an entry with the same path in two
migratables will not conflict with each other. Each migratable is given its own context (a.k.a. sandbox)
to work with.

25.1.6. MigrationEntry

This interface provides supports for exported files. It defines the following methods:

o MigrationReport getReport()
o String getId()

o String getName()

o Path getPath()

« boolean isDirectory()

« boolean isFile()

o long getlastModifiedTime()

The getReport() method provides access to the associated migration report where messages can be
recorded.

The getId() method returns the identifier for the migratable responsible for this entry.

The getName() method provides the unique name for this entry in an OS-independent way.

The getPath() method provides the unique path to the corresponding file for this entry in an OS-
specific way.

The isDirectory() method indicates if the entry represents a directory. The isFile() method indicates
if the entry represents a file. The getlLastModifiedTime() method provides the last modification time for
the corresponding file or directory as available when the file or directory is exported.

25.1.7. ExportMigrationEntry

The export migration entry provides additional methods available for entries created at export time. It
defines the following methods:

o Optional<ExportMigrationEntry> getPropertyReferencedEntry(String name)

« Optional<ExportMigrationEntry> getPropertyReferencedEntry(String name,
BiPredicate<MigrationReport, String> validator)

« boolean store()

« boolean store(boolean required)

« boolean store(PathMatcher filter)

« boolean store(boolean required, PathMatcher filter)

o boolean store(BiThrowingConsumer<MigrationReport, OutputStream, IOException> consumer)

o OutputStream getOutputStream() throws IOException

The getPropertyReferencedEntry() methods create another migration entry for a file that was
referenced by a given property value in the file represented by this entry.

365

The store() and store(boolean required) methods will automatically copy the content of the
corresponding file as part of the export making sure the file exists (if required) on disk otherwise an
error will be recorded. If the path represents a directory then all files recursively found under the path
will be automatically exported.

The store(PathMatcher filter) and store(boolean required, PathMatcher filter) methods will
automatically copy the content of the corresponding file if it matches the filter as part of the export
making sure the file exists (if required) on disk otherwise an error will be recorded. If the path
represents a directory then all matching files recursively found under the path will be automatically
exported.

The store(BiThrowingConsumer<MigrationReport, OutputStream, IOException> consumer) method allows
the migratable to control the export process by specifying a callback consumer that will be called back
with an output stream where the data can be writen to instead of having a file on disk being copied by
the migration API. The OutputStream getOutputStream() method provides access to the low-level output
stream where the migratable can write data directly as opposed to having a file on disk copied
automatically.

25.1.8. ImportMigrationEntry

The import migration entry provides additional methods available for entries retrieved at import time.
It defines the following methods:

o Optional<ImportMigrationEntry> getPropertyReferencedEntry(String name)
« boolean restore()

o boolean restore(boolean required)

« boolean restore(PathMatcher filter)

« boolean restore(boolean required, PathMatcher filter)

o boolean restore(BiThrowingConsumer<MigrationReport, Optional<InputStream>, I0Exception>
consumer)

o Optional<InputStream getInputStream() throws IOException

The getPropertyReferencedEntry() method retrieves another migration entry for a file that was
referenced by a given property value in the file represented by this entry.

The restore() and restore(boolean required) methods will automatically copy the exported content of
the corresponding file back to disk if it was exported; otherwise an error will be recorded. If the path
represents a directory then all file entries originally recursively exported under this entry’s path will
be automatically imported. If the directory had been completely exported using one of the store() or
store(boolean required) methods then in addition to restoring all entries recursively, calling this
method will also remove any existing files or directories that were not on the original system.

The restore(PathMatcher filter) and restore(boolean required, PathMatcher filter) methods will
automatically copy the exported content of the corresponding file if it matches the filter back to disk if
it was exported; otherwise an error will be recorded. If the path represents a directory then all
matching file entries originally recursively exported under this entry’s path will be automatically
imported.

The restore(BiThrowingConsumer<MigrationReport, Optional<InputStream>, IOException> consumer)
method allows the migratable to control the import process by specifying a callback consumer that will

366

be called back with an optional input stream (empty if the data was not exported) where the data can
be read from instead of having a file on disk being created or updated by the migration API.

The Optional<InputStream> getInputStream() method provides access to the optional low-level input
stream (empty if the data was not exported) where the migratable can read data directly as opposed to
having a file on disk created or updated automatically.

25.1.9. MigrationOperation

The org.codice.ddf.migration.MigrationOperation provides a simple enumeration for identifying the
various migration operations available.

25.1.10. MigrationReport

The org.codice.ddf.migration.MigrationReport interface provides information about the execution of a
migration operation. It defines the following methods:

o MigrationOperation getOperation()

o Instant getStartTime()

o Optional<Instant> getEndTime()

o MigrationReport record(String msq)

o MigrationReport record(String format, @Nullable Object::- args)

o MigrationReport record(MigrationMessage msg)

o MigrationReport doAfterCompletion(Consumer<MigrationReport> code)
« Stream<MigrationMessage> messages()

o default Stream<MigrationException> errors()

o Stream<MigrationWarning> warnings()

o Stream<MigrationInformation> infos()

« boolean wasSuccessful()

« boolean wasSuccessful(@Nullable Runnable code)

o boolean wasIOSuccessful(@Nullable ThrowingRunnable<IOException> code) throws IOException
« boolean hasInfos()

« boolean hasWarnings()

« boolean hasErrors()

« void verifyCompletion()

The getOperation() method provides the type of migration operation (i.e. export or import) currently in
progress.

The getStartTime() method provides the time at which the corresponding operation started.

The getEndTime() method provides the optional time at which the corresponding operation ended. The
time is only available if the operation has ended.

The record() methods enable messages to be recorded with the report. Messages are displayed on the
console for the administrator.

The doAfterCompletion() methods enable code to be registered such that it is invoked at the end before

367

a successful result is returned. Such code can still affect the result of the operation.

The messages() method provides access to all recorded messages so far.

The errors() method provides access to all recorded error messages so far.

The warnings() method provides access to all recorded warning messages so far.

The infos() method provides access to all recorded informational messages so far.

The wasSuccessful() method provides a quick check to see if the report is successful. A successful
report might have warnings recorded but cannot have errors recorded.

The wasSuccessful(Runnable code) method allows code to be executed. It will return true if no new
errors are recorded as a result of executing the provided code.
The ‘wasIOSuccessful(ThrowingRunnable<IOException> code) method allows code to be executed which
can throw I/0 exceptions which are automatically recorded as errors. It will return true if no new
errors are recorded as a result of executing the provided code.

The ‘hasInfos() method will return true if at least one information message has been recorded so far.
The hasWarnings() method will return true if at least one warning message has been recorded so far.
The hasErrors() method will return true if at least one error message has been recorded so far.

The “verifyCompletion() method will verify if the report is successful and if not, it will throw back the
first recorded exception and attach as suppressed exceptions all other recorded exceptions.

25.1.11. MigrationMessage

The "org.codice.ddf.migration.MigrationException is defined as a base class for all recordable
messages during migration operations. It defines the following methods:

« String getMessage()

The getMessage() method provides a message for the corresponding exception, warning, or info that
will be displayed to the administrator on the console.

25.1.12. MigrationException

An org.codice.ddf.migration.MigrationException should be thrown when an unrecoverable exception
occurs that prevents the export or the import operation from continuing. It is also possible to simply
record one or many exception(s) with the migration report in order to fail the export or import
operation while not aborting it right away. This provides for the ability to record as many errors as
possible and report all of them back to the administrator. All migration exception messages are
displayed to the administrator.

25.1.13. MigrationWarning

An org.codice.ddf.migration.MigrationWarning should be used when a migratable wants to warn the
administrator that certain aspects of the export or the import may cause problems. For example, if an
absolute path is encountered, that path may not exist on the target system and cause the installation to
fail. All migration warning messages are displayed to the administrator.

368

25.1.14. MigrationInformation

An org.codice.ddf.migration.MigrationInformation should be used when a migratable simply wants to
provide useful information to the administrator. All migration information messages are displayed to
the administrator.

25.1.15. MigrationSuccessfullnformation

The org.codice.ddf.migration.MigrationSuccessfullnformation can be used to further qualify an
information message as representing the success of an operation.

26. Security Framework

The DDF Security Framework utilizes Apache Shiro as the underlying security framework. The classes
mentioned in this section will have their full package name listed, to make it easy to tell which classes
come with the core Shiro framework and which are added by DDF.

26.1. Subject

ddf.security.Subject <extends> org.apache.shiro.subject.Subject

The Subject is the key object in the security framework. Most of the workflow and implementations
revolve around creating and using a Subject. The Subject object in DDF is a class that encapsulates all
information about the user performing the current operation. The Subject can also be used to perform
permission checks to see if the calling user has acceptable permission to perform a certain action (e.g.,
calling a service or returning a metacard). This class was made DDF-specific because the Shiro
interface cannot be added to the Query Request property map.

Table 71. Implementations of Subject:

Classname Description

ddf.security.impl.SubjectImpl Extends
org.apache.shiro.subject.support.DelegatingSubje
ct

26.1.1. Security Manager

ddf.security.service.SecurityManager

The Security Manager is a service that handles the creation of Subject objects. A proxy to this service
should be obtained by an endpoint to create a Subject and add it to the outgoing QueryRequest. The
Shiro framework relies on creating the subject by obtaining it from the current thread. Due to the
multi-threaded and stateless nature of the DDF framework, utilizing the Security Manager interface
makes retrieving Subjects easier and safer.

369

http://shiro.apache.org/

Table 72. Implementations of Security Managers:

Classname Description

ddf.security.service.SecurityManagerImpl This implementation of the Security Manager
handles taking in both org.apache.shiro.authc.

AuthenticationToken and
org.apache.cxf.ws.security.tokenstore.SecurityTo

ken objects.

26.1.2. Realms

DDF uses Apache Shiro for the concept of Realms for Authentication and Authorization. Realms are
components that access security data such as such as users or permissions.

26.1.2.1. Authenticating Realms

org.apache.shiro.realm.AuthenticatingRealm

Authenticating Realms are used to authenticate an incoming authentication token and create a Subject
on successful authentication. A Subject is an application user and all available security-relevant
information about that user.

Table 73. Implementations of Authenticating Realms in DDF:

Classname Description

ddf.security.realm.sts.StsRealm This realm delegates authentication to the Secure Token Service
(STS). It creates a RequestSecurityToken message from the incoming
Authentication Token and converts a successful STS response into a
Subject.

26.1.2.2. Authorizing Realms

org.apache.shiro.realm.AuthorizingRealm

Authorizing Realms are used to perform authorization on the current Subject. These are used when
performing both service authorization and filtering. They are passed in the AuthorizationInfo of the
Subject along with the permissions of the object wanting to be accessed. The response from these
realms is a true (if the Subject has permission to access) or false (if the Subject does not).

Table 74. Other implementations of the Security API within DDF

Classname Description

org.codice.ddf.platform.filter. The DelegateServletFilter detects any servlet filters that have been

delegate.DelegateServietFilter exposed as OSGi services implementing
org.codice.ddf.platform.filter.SecurityFilter and places them in-
order in front of any servlet or web application running on the
container.

370

https://shiro.org
https://shiro.apache.org/realm.html
https://shiro.apache.org/subject.html

Classname

org.codice.ddf.security.filter.
websso.WebSSOFilter

org.codice.ddf.security.handler
.saml.SAMLAssertionHandler

org.codice.ddf.security.handler
.basic.BasicAuthenticationHandl
er

org.codice.ddf.security.handler
.pki.PKIHandler

org.codice.ddf.security.handler
.quest.GuestHandler

org.codice.ddf.security.filter.
login.LoginFilter

org.codice.ddf.security.filter.
authorization.AuthorizationFilt
er

org.apache.shiro.realm.Authenti
catingRealm

ddf.security.realm.sts.StsRealm

ddf.security.service.AbstractAu
thorizingRealm

Description

This filter is the main security filter that works with a number of
handlers to protect a variety of web contexts, each using different
authentication schemes and policies.

This handler is executed by the WebSSOFilter for any contexts
configured to use it. This handler should always come first when
configured in the Web Context Policy Manager, as it provides a
caching capability to web contexts that use it. The handler will first
check for the existence of an HTTP Authorization header of type
SAML, whose value is a Base64 + deflate SAML assertion. If that is
not found, then the handler will check for the existence of the
deprecated org.codice.websso.saml.token cookie with the same
value. Failing that, it will check for a JSESSIONID cookie to use as a
reference to a cached assertion. If the JSESSIONID is valid, the
SecurityToken will be retrieved from the cache.

Checks for basic authentication credentials in the http request
header. If they exist, they are retrieved and passed to the
LoginFilter for exchange.

Handler for PKI based authentication. X509 chain will be extracted
from the HTTP request and converted to a BinarySecurityToken.

Handler that allows guest user access via a guest user account. The
guest account credentials are configured via the
org.codice.ddf.security.claims.guest.GuestClaimsHandler. The
GuestHandler also checks for the existence of basic auth credentials
or PKI credentials that might be able to override the use of the
guest user.

This filter runs immediately after the WebSSOFilter and exchanges
any authentication information found in the request with a Subject
via Shiro.

This filter runs immediately after the LoginFilter and checks any
permissions assigned to the web context against the attributes of
the user via Shiro.

This is an abstract authenticating realm that exchanges an
org.apache.shiro.authc.AuthenticationToken for a

ddf.security.Subject in the form of an
org.apache.shiro.authc.AuthenticationInfo

This realm is an implementation of
org.apache.shiro.realm.AuthenticatingRealm and connects to an STS
(configurable) to exchange the authentication token for a Subject.

This is an abstract authorizing realm that takes care of caching and
parsing the Subject’s AuthorizingInfo and should be extended to
allow the implementing realm to focus on making the decision.

371

Classname Description

ddf.security.pdp.realm.AuthZRea This realm performs the authorization decision and may or may

Lm not delegate out to the external XACML processing engine. It uses
the incoming permissions to create a decision. However, it is
possible to extend this realm using the
ddf.security.policy.extension.PolicyExtension interface. This
interface allows an integrator to add additional policy information
to the PDP that can’t be covered via its generic matching policies.
This approach is often easier to configure for those that are not
familiar with XACML.

org.codice.ddf.security.validat A number of STS validators are provided for X.509

or.* (BinarySecurityToken), UsernameToken, SAML Assertion, and DDF
custom tokens. The DDF custom tokens are all BinarySecurityTokens
that may have PKI or username/password information.

An update was made to the SAML Assertion Handler to pass SAML assertions
through the Authorization HTTP header. Cookies are still accepted and processed
to maintain legacy federation compatibility, but assertions are sent in the header

WARNING on outbound requests. While a machine’s identity will still federate between
versions, a user’s identity will ONLY be federated when a DDF version 2.7.xX server
communicates with a DDF version 2.8.x+ server, or between two servers whose
versions are 2.8.x or higher.

26.2. Security Core

The Security Core application contains all of the necessary components that are used to perform
security operations (authentication, authorization, and auditing) required in the framework.

26.2.1. Security Core API

The Security Core API contains all of the DDF APIs that are used to perform security operations within
DDF.

26.2.1.1. Installing the Security Core API

The Security Services App installs the Security Core API by default. Do not uninstall the Security Core
API as it is integral to system function and all of the other security services depend upon it.

26.2.1.2. Configuring the Security Core API

The Security Core API has no configurable properties.

26.2.2. Security Core Implementation

The Security Core Implementation contains the reference implementations for the Security Core API

372

interfaces that come with the DDF distribution.

26.2.2.1. Installing the Security Core Implementation

The Security Core app installs this bundle by default. It is recommended to use this bundle as it
contains the reference implementations for many classes used within the Security Framework.

26.2.2.2. Configuring the Security Core Implementation

The Security Core Implementation has no configurable properties.

26.2.3. Security Core Commons

The Security Core Commons bundle contains helper and utility classes that are used within DDF to help
with performing common security operations. Most notably, this bundle contains the
ddf.security.common.audit.SecuritylLogger class that performs the security audit logging within DDF.

26.2.3.1. Configuring the Security Core Commons

The Security Core Commons bundle has no configurable properties.

26.3. Security IdP

The Security IdP application provides service provider handling that satisfies the SAML 2.0 Web SSO
profile & in order to support external IdPs (Identity Providers) or SPs (Service Providers). This
capability allows use of DDF as the SSO solution for an entire enterprise.

Table 75. Security IdP Components

Bundle Name Located in Description
Feature
security-idp-client security-idp The IdP client that interacts with the
specified Identity Provider.
security-idp-server security-idp An internal Identity Provider solution.
Limitations
NOTE The internal Identity Provider solution should be used in favor of any external

solutions until the IdP Service Provider fully satisfies the SAML 2.0 Web SSO profile .

26.4. Security Encryption

The Security Encryption application offers an encryption framework and service implementation for
other applications to use. This service is commonly used to encrypt and decrypt default passwords that
are located within the metatype and Admin Console.

373

http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf
https://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf

The encryption service and encryption command, which are based on tink [, provide an easy way for
developers to add encryption capabilities to DDF.

26.4.1. Security Encryption API

The Security Encryption API bundle provides the framework for the encryption service. Applications
that use the encryption service should use the interfaces defined within it instead of calling an
implementation directly.

26.4.1.1. Installing Security Encryption API

This bundle is installed by default as part of the security-encryption feature. Many applications that
come with DDF depend on this bundle and it should not be uninstalled.

26.4.1.2. Configuring the Security Encryption API

The Security Encryption API has no configurable properties.

26.4.2. Security Encryption Implementation

The Security Encryption Implementation bundle contains all of the service implementations for the
Encryption Framework and exports those implementations as services to the OSGi service registry.

26.4.2.1. Installing Security Encryption Implementation

This bundle is installed by default as part of the security-encryption feature. Other projects are
dependent on the services this bundle exports and it should not be uninstalled unless another security
service implementation is being added.

26.4.2.2. Configuring Security Encryption Implementation

The Security Encryption Implementation has no configurable properties.

26.4.3. Security Encryption Commands

The Security Encryption Commands bundle enhances the DDF system console by allowing
administrators and integrators to encrypt and decrypt values directly from the console.

The security:encrypt command allows plain text to be encrypted using HMAC + AES for encryption
with a randomly generated key that is created when the system is installed. This is useful when
displaying password fields in a GUL

Below is an example of the security:encrypt command used to encrypt the plain text
"myPasswordToEncrypt". The output, bRImJpDVo8bTRwqGwIFxHI5yFJzatKwjXjIo/8USWm8=, is the encrypted
value.

374

https://github.com/google/tink/wiki

ddf@local>security:encrypt myPasswordToEncrypt

bRImIpDVo8bTRwqGwIFxHI5yFJzatkwjXjIo/8USWm8=

26.4.3.1. Installing the Security Encryption Commands

This bundle is installed by default with the security-encryption feature. This bundle is tied specifically
to the DDF console and can be uninstalled if not needed. When uninstalled, however, administrators
will not be able to encrypt and decrypt data from the console.

26.4.3.2. Configuring the Security Encryption Commands

The Security Encryption Commands have no configurable properties.

26.5. Security LDAP

The DDF LDAP application allows the user to configure either an embedded or a standalone LDAP
server. The provided features contain a default set of schemas and users loaded to help facilitate
authentication and authorization testing.

26.5.1. Embedded LDAP Server

DDF includes an embedded LDAP server (OpenD]) for testing and demonstration purposes.

The embedded LDAP server is intended for testing purposes only and is not

WARNING
recommended for production use.

26.5.1.1. Installing the Embedded LDAP Server

The embedded LDAP server is not installed by default with a standard installation.

1. Navigate to the Admin Console.
2. Select the System tab.
3. Select the Features tab.

4. Install the opendj-embedded feature.
26.5.1.2. Configuring the Embedded LDAP
Configure the Embedded LDAP from the Admin Console:

1. Navigate to the Admin Console.
2. Select the OpenDj Embedded application.

3. Select the Configuration tab.

375

Table 76. OpenD] Embedded Configurable Properties

Configurat Description

ion Name

LDAP Port

Sets the port for LDAP (plaintext and startTLS). 0 will disable the port.

LDAPS Port Sets the port for LDAPS. 0 will disable the port.

Base LDIF
File

26.5.1.3. Connecting to Standalone LDAP Servers

Location on the server for a LDIF file. This file will be loaded into the LDAP and
overwrite any existing entries. This option should be used when updating the default
groups/users with a new LDIF file for testing. The LDIF file being loaded may contain any
LDAP entries (schemas, users, groups, etc.). If the location is left blank, the default base
LDIF file will be used that comes with DDF.

DDF instances can connect to external LDAP servers by installing and configuring the security-sts-
ldaplogin and security-sts-1ldapclaimshandler features detailed here.

In order to connect to more than one LDAP server, configure these features for each LDAP server.

26.5.1.4. Embedded LDAP Configuration

The Embedded LDAP application contains an LDAP server (OpenD] version 2.6.2) that has a default set
of schemas and users loaded to help facilitate authentication and authorization testing.

Table 77. Embedded LDAP Default Ports Settings

Protocol
LDAP

LDAPS
StartTLS

Table 78. Embedded LDAP Default Users

Username

testuser1
testuser?
nromanova

lcage

jhowlett

pparker

376

Password Groups
password1

password?

password1 avengers
password1 admin, avengers
password1 admin, avengers
password1 admin, avengers

Default Port
1389
1636
1389

Description

General test user for authentication
General test user for authentication
General test user for authentication

General test user for authentication, Admin user
for karaf

General test user for authentication, Admin user
for karaf

General test user for authentication, Admin user
for karaf

Username Password Groups Description

jdrew password1 admin, avengers General test user for authentication, Admin user
for karaf

tstark password1 admin, avengers General test user for authentication, Admin user
for karaf

bbanner password1 admin, avengers General test user for authentication, Admin user
for karaf

srogers password1 admin, avengers General test user for authentication, Admin user
for karaf

admin admin admin Admin user for karaf

Table 79. Embedded LDAP Default Admin User Settings

Username Password Groups Attributes Description
admin secret Administrative
User for LDAP

26.5.1.5. Schemas
The default schemas loaded into the LDAP instance are the same defaults that come with OpenD].

Table 80. Embedded LDAP Default Schemas

Schema Schema Description &

File Name

00-) This file contains a core set of attribute type and objectlass definitions from several

core.ldif standard LDAP documents, including draft-ietf-boreham-numsubordinates, draft-findlay-
ldap-groupofentries, draft-furuseth-1dap-untypedobject, draft-good-1dap-changelog,
draft-ietf-1ldup-subentry, draft-wahl-1dap-adminaddr, RFC 1274, RFC 2079, RFC 2256, RFC
2798, RFC 3045, RFC 3296, RFC 3671, RFC 3672, RFC 4512, RFC 4519, RFC 4523, RFC 4524,
RFC 4530, RFC 5020, and X.501.

0n- This file contains schema definitions from draft-behera-1dap-password-policy, which

?"%’pOU ¢y-1d gefines a mechanism for storing password policy information in an LDAP directory
server.

02- _ This file contains the attribute type and objectclass definitions for use with the directory

config. 1dif gerver configuration.

03- This file contains schema definitions from draft-good-1dap-changelog, which defines a

(cj?]acngelog ‘1 mechanism for storing information about changes to directory server data.

03- This file contains schema definitions from RFC 2713, which defines a mechanism for

rfc2713.1di

£ storing serialized Java objects in the directory server.

03- This file contains schema definitions from RFC 2714, which defines a mechanism for

;fc2714 ‘147 storing CORBA objects in the directory server.

377

https://backstage.forgerock.com/docs/opendj/2.6/admin-guide/#chap-schema

Schema
File Name

03-
rfc2739.1d1
f

03-
rfc2926.1di
f

03-
rfc3112.1di
f

03-
rfc3712.1di
f

03-
uddiv3.1dif

04-
rfc2307bis.
1dif

05-

rfc4876.1di
f

05-
samba.ldif

05-
solaris.1ldi
f

06-
compat.ldif

Schema Description

This file contains schema definitions from RFC 2739, which defines a mechanism for
storing calendar and vCard objects in the directory server. Note that the definition in RFC
2739 contains a number of errors, and this schema file has been altered from the
standard definition in order to fix a number of those problems.

This file contains schema definitions from RFC 2926, which defines a mechanism for
mapping between Service Location Protocol (SLP) advertisements and LDAP.

This file contains schema definitions from RFC 3112, which defines the authentication
password schema.

This file contains schema definitions from RFC 3712, which defines a mechanism for
storing printer information in the directory server.

This file contains schema definitions from RFC 4403, which defines a mechanism for
storing UDDIv3 information in the directory server.
This file contains schema definitions from the draft-howard-rfc2307bis specification,

used to store naming service information in the directory server.

This file contains schema definitions from RFC 4876, which defines a schema for storing
Directory User Agent (DUA) profiles and preferences in the directory server.

This file contains schema definitions required when storing Samba user accounts in the
directory server.
This file contains schema definitions required for Solaris and OpenSolaris LDAP naming

services.

This file contains the attribute type and objectclass definitions for use with the directory
server configuration.

26.5.1.6. Starting and Stopping the Embedded LDAP

The embedded LDAP application installs a feature with the name 1dap-embedded. Installing and
uninstalling this feature will start and stop the embedded LDAP server. This will also install a fresh
instance of the server each time. If changes need to persist, stop then start the embedded-1dap-opendj
bundle (rather than installing/uninstalling the feature).

All settings, configurations, and changes made to the embedded LDAP instances are persisted across
DDF restarts. If DDF is stopped while the LDAP feature is installed and started, it will automatically
restart with the saved settings on the next DDF start.

26.5.1.7. Limitations of the Embedded LDAP

Current limitations for the embedded LDAP instances include:

* Inability to store the LDAP files/storage outside of the DDF installation directory. This results in any

378

https://backstage.forgerock.com/docs/opendj/2.6/admin-guide/#chap-schema

LDAP data (i.e., LDAP user information) being lost when the 1dap-embedded feature is uninstalled.
* Cannot be run standalone from DDF. In order to run embedded-1dap, the DDF must be started.
26.5.1.8. External Links for the Embedded LDAP

Location to the default base LDIF file in the DDF source code .

OpenD] documentation &

26.5.1.9. LDAP Administration

OpenDJ provides a number of tools for LDAP administration. Refer to the OpenD] Admin Guide .

26.5.1.10. Downloading the Admin Tools

Download OpenD]J (Version 2.6.4) Z and the included tool suite.

26.5.1.11. Using the Admin Tools

The admin tools are located in <opendj-installation>/bat for Windows and <opendj-installation>/bin
for nix. These tools can be used to administer both local and remote LDAP servers by setting the
*host and port parameters appropriately.

In this example, the user Bruce Banner (uid=bbanner)is disabled using the manage-account
command on Windows. Run manage-account --help for usage instructions.

Example Commands for Disabling/Enabling a User’s Account

D:\OpenDJ-2.4.6\bat>manage-account set-account-is-disabled -h localhost -p 4444 -0 true
-D "cn=admin" -w secret -b "uid=bbanner,ou=users,dc=example,dc=com"
The server is using the following certificate:
Subject DN: CN=Win7-1, O=Administration Connector Self-Signed Certificate
Issuer DN: CN=Win7-1, O=Administration Connector Self-Signed Certificate
Validity: Wed Sep 04 15:36:46 MST 2013 through Fri Sep 04 15:36:46 MST 2015
Do you wish to trust this certificate and continue connecting to the server?
Please enter "yes" or "no":yes
Account Is Disabled: true

Notice Account Is Disabled: truein the listing:

379

https://github.com/codice/opendj-osgi/blob/master/embedded/opendj-embedded-server/src/main/resources/default-users.ldif
https://backstage.forgerock.com/docs/opendj/2.6
https://backstage.forgerock.com/docs/opendj/2.6/admin-guide/
https://backstage.forgerock.com/downloads/OpenDJ/OpenDJ%20Enterprise/2.6.4#browse

Verifying an Account is Disabled

D:\OpenDJ-2.4.6\bat>manage-account get-all -h localhost -p 4444 -D "cn=admin" -w secret

-b "uid=bbanner,ou=users,dc=example,dc=com"

The server is using the following certificate:
Subject DN: CN=Win7-1, O=Administration Connector Self-Signed Certificate
Issuer DN: CN=Win7-1, O=Administration Connector Self-Signed Certificate
Validity: Wed Sep 04 15:36:46 MST 2013 through Fri Sep 04 15:36:46 MST 2015

Do you wish to trust this certificate and continue connecting to the server?

Please enter "yes" or "no":yes

Password Policy DN: cn=Default Password Policy,cn=Password Policies,cn=config

Account Is Disabled: true

Account Expiration Time:

Seconds Until Account Expiration:

Password Changed Time: 19700101000000.0007

Password Expiration Warned Time:

Seconds Until Password Expiration:

Seconds Until Password Expiration Warning:

Authentication Failure Times:

Seconds Until Authentication Failure Unlock:

Remaining Authentication Failure Count:

Last Login Time:

Seconds Until Idle Account Lockout:

Password Is Reset: false

Seconds Until Password Reset Lockout:

Grace Login Use Times:

Remaining Grace Login Count: 0

Password Changed by Required Time:

Seconds Until Required Change Time:

Password History:

Enabling an Account

D:\OpenDJ-2.4.6\bat>manage-account clear-account-is-disabled -h localhost -p 4444 -D
"cn=admin" -w secret -b "uid=bbanner,ou=users,dc=example,dc=com"
The server is using the following certificate:
Subject DN: CN=Win7-1, O=Administration Connector Self-Signed Certificate
Issuer DN: CN=Win7-1, O=Administration Connector Self-Signed Certificate
Validity: Wed Sep 04 15:36:46 MST 2013 through Fri Sep 04 15:36:46 MST 2015
Do you wish to trust this certificate and continue connecting to the server?
Please enter "yes" or "no":yes
Account Is Disabled: false

Notice Account Is Disabled: false in the listing.

380

Verifying an Account is Enabled

D:\OpenDJ-2.4.6\bat>manage-account get-all -h localhost -p 4444 -D "cn=admin" -w secret

-b "uid=bbanner,ou=users,dc=example,dc=com"

The server is using the following certificate:
Subject DN: CN=Win7-1, O=Administration Connector Self-Signed Certificate
Issuer DN: CN=Win7-1, O=Administration Connector Self-Signed Certificate
Validity: Wed Sep 04 15:36:46 MST 2013 through Fri Sep 04 15:36:46 MST 2015

Do you wish to trust this certificate and continue connecting to the server?

Please enter "yes" or "no":yes

Password Policy DN: cn=Default Password Policy,cn=Password Policies,cn=config

Account Is Disabled: false

Account Expiration Time:

Seconds Until Account Expiration:

Password Changed Time: 19700101000000.0007

Password Expiration Warned Time:

Seconds Until Password Expiration:

Seconds Until Password Expiration Warning:

Authentication Failure Times:

Seconds Until Authentication Failure Unlock:

Remaining Authentication Failure Count:

Last Login Time:

Seconds Until Idle Account Lockout:

Password Is Reset: false

Seconds Until Password Reset Lockout:

Grace Login Use Times:

Remaining Grace Login Count: 0

Password Changed by Required Time:

Seconds Until Required Change Time:

Password History:

26.6. Security PDP

The Security Policy Decision Point (PDP) module contains services that are able to perform
authorization decisions based on configurations and policies. In the Security Framework, these
components are called realms, and they implement the org.apache.shiro.realm.Realm and
org.apache.shiro.authz.Authorizer interfaces. Although these components perform decisions on access
control, enforcement of this decision is performed by components within the notional PEP application.

26.6.1. Security PDP AuthZ Realm

The Security PDP AuthZ Realm exposes a realm service that makes decisions on authorization requests
using the attributes stored within the metacard to determine if access should be granted. This realm
can use XACML and will delegate decisions to an external processing engine if internal processing fails.
Decisions are first made based on the "match-all" and "match-one" logic. Any attributes listed in the

381

"match-all" or "match-one" sections will not be passed to the XACML processing engine and they will be
matched internally. It is recommended to list as many attributes as possible in these sections to avoid
going out to the XACML processing engine for performance reasons. If it is desired that all decisions be
passed to the XACML processing engine, remove all of the "match-all" and "match-one" configurations.
The configuration below provides the mapping between user attributes and the attributes being
asserted - one map exists for each type of mapping (each map may contain multiple values).

Match-All Mapping:: This mapping is used to guarantee that all values present in the specified
metacard attribute exist in the corresponding user attribute. Match-One Mapping:: This mapping is
used to guarantee that at least one of the values present in the specified metacard attribute exists in
the corresponding user attribute.

26.6.1.1. Configuring the Security PDP AuthZ Realm

1. Navigate to the Admin Console.
2. Select Security Application.
3. Select Configuration tab.

4. Select Security AuthZ Realm.

See Security AuthZ Realm for all possible configurations.

26.6.2. Guest Interceptor

The goal of the GuestInterceptor is to allow non-secure clients (such as SOAP requests without security
headers) to access secure service endpoints.

All requests to secure endpoints must satisfy the WS-SecurityPolicy that is included in the WSDL.

Rather than reject requests without user credentials, the guest interceptor detects the missing
credentials and inserts an assertion that represents the "guest" user. The attributes included in this
guest user assertion are configured by the administrator to represent any unknown user on the
current network.

26.6.2.1. Installing Guest Interceptor

The GuestInterceptor is installed by default with Security Application.

26.6.2.2. Configuring Guest Interceptor

Configure the Guest Interceptor from the Admin Console:
1. Navigate to the Admin Console at https://{FQDN}:{PORT}/admin
2. Select the Security application.

3. Select the Configuration tab.

4. Select the Security STS Guest Claims Handler configuration.

382

5. Select the + next to Attributes to add a new attribute.
6. Add any additional attributes that will apply to every user.
7. Select Save changes.

Once these configurations have been added, the GuestInterceptor is ready for use. Both secure and
non-secure requests will be accepted by all secure DDF service endpoints.

26.7. Web Service Security Architecture

The Web Service Security (WSS) functionality that comes with DDF is integrated throughout the
system. This is a central resource describing how all of the pieces work together and where they are
located within the system.

DDF comes with a Security Framework and Security Services. The Security Framework is the set of
APIs that define the integration with the DDF framework and the Security Services are the reference
implementations of those APIs built for a realistic end-to-end use case.

26.7.1. Securing REST

Web S50
Filter

(mmzmmmmeees Request eques
, External ! d

i\ DDF | Jetty

| Client |

eques
Auth. U}+[Validators }—b[Claim: }—b[Token]
sTs Handlers Issuers
Reaim .
Whitelisted? ﬁ i
Response " (j=========c==sssccssssssscscms22s !
|
¢ # i IWeb Cxt !
i {Manager |
- entponm | : ‘

'
SUBJECT

:nnfisured
Login
P Handl T Filter
andler !
Li_l NN -
L

n Handler
SAML Assert Authz | [N | [- |
Handler > Filter — ! |
' Exg:an_sion |
| Service
“— :
Other L

Handlers

|
L

Security Architecture

The Jetty Authenticator is the topmost handler of all requests. It initializes all Security Filters and runs
them in order according to service ranking:

1. The Web SSO Filter reads from the web context policy manager and functions as the first decision
point. If the request is from a whitelisted context, no further authentication is needed and the
request goes directly to the desired endpoint. If the context is not on the whitelist, the filter will
attempt to get a claims handler for the context. The filter loops through all configured context
handlers until one signals that it has found authentication information that it can use to build a
token. This configuration can be changed by modifying the web context policy manager
configuration. If unable to resolve the context, the filter will return an authentication error and the
process stops. If a handler is successfully found, an auth token is assigned and the request

383

continues to the login filter.

2. The Login Filter receives a token and returns a subject. To retrieve the subject, the token is sent
through Shiro to the STS Realm where the token will be exchanged for a SAML assertion through a
SOAP call to an STS server.

3. If the Subject is returned, the request moves to the AuthZ Filter to check permissions on the user.
If the user has the correct permissions to access that web context, the request can hit the endpoint.

IdP Architecture

Metadata Exchange

Web 550 IdP Client Endpoint
Filter STS Server
IdP Handler Assertion
Consumer
Yes Service (ACS)
Logged In
Token SAML

No

Has SAML Redirect back via POST Metadata
< Endpoint +—
IdP Server

<
™
w

No

Yes Is Browser

No

Start ECP

Redirect to IdP

The IdP Handler is a configured handler on the Web SSO Filter just like the other handlers in the
previous diagram. The IdP Handler and the Assertion Consumer Service are both part of the IdP client
that can be used to interface with any compliant SAML 2.0 Web SSO Identity Provider.

The Metadata Exchange happens asynchronously from any login event. The exchange can happen via
HTTP or File, or the metadata XML itself can be pasted into the configuration for either the IdP client
or the IdP server that the system ships with. The metadata contains information about what bindings
are accepted by the client or server and whether or not either expects messages to be signed, etc. The
redirect from the Assertion Consumer Service to the Endpoint will cause the client to pass back
through the entire filter chain, which will get caught at the Has Session point of the IdP Handler. The
request will proceed through the rest of the filters as any other connection would in the previous
diagram.

Unauthenticated non-browser clients that pass the HTTP headers signaling that they understand SAML
ECP can authenticate via that mechanism as explained below.

384

Service Provider (SP)

IdP Client Identity Provider (IdP)

Handler ACS
A
A
5
1 Signed Response
Access In PAOS Response 3
Resource AuthNRequest
4 In SOAP Request
6 Signed Response
Supply 2 In'SOAP Response
Resource AuthNRequest
In PAOS Request
\
SAML ECP Aware SOAP Intermediary
Secure Client (CXF Interceptor)
Ecp Architecture

SAML ECP can be used to authenticate a non-browser client or non-person entity (NPE). This method of
authentication is useful when there is no human in the loop, but authentication with an IdP is still
desired. The IdP Handler will send a PAOS (Reverse SOAP) request as an initial response back to the
Secure Client, assuming the client has sent the necessary HTTP headers to declare that it supports this
function. That response does not complete the request/response loop, but is instead caught by a SOAP
intermediary, which is implemented through a CXF interceptor. The PAOS response contains an
<AuthNRequest> request message, which is intended to be rerouted to an IdP via SOAP. The SOAP
intermediary will then contact an IdP (selection of the IdP is not covered by the spec). The IdP will
either reject the login attempt, or issue a Signed <Response> that is to be delivered to the Assertion
Consumer Service by the intermediary. The method of logging into the IdP is not covered by the spec
and is up to the implementation. The SP is then signaled to supply the originally requested resource,
assuming the signed Response message is valid and the user has permission to view the resource.

The ambiguity in parts of the spec with regard to selecting an IdP to use and logging into that IdP can
lead to integration issues between different systems. However, this method of authentication is not
necessarily expected to work by default with anything other than other instances of DDF. It does,
however, provide a starting point that downstream projects can leverage in order to provide ECP
based authentication for their particular scenario or to connect to other systems that utilize SAML ECP.

26.7.2. Securing SOAP

385

Secure
SOAP
Client

Dumb
SOAP
Client

get WSDL

WSDL

get token

token

secure call

results

call endpoint

SOAP
Endpoint

STS

Server

Policy
Enforcement

Point

Anonymous

Interceptor

Read
Policy

v

Bui

Id

Security
Headers

v

Get
Anon SAML

Authorized?

Decision

4

v

Anon Token

T L

Subject

Expansion
Service

26.7.2.1. SOAP Secure Client

When calling to an endpoint from a SOAP secure client, it first requests the WSDL from the endpoint
and the SOAP endpoint returns the WSDL. The client then calls to STS for authentication token to
proceed. If the client receives the token, it makes a secure call to the endpoint and receives results.

26.7.2.2. Policy-unaware SOAP Client

If calling an endpoint from a non-secure client, at the point the of the initial call, the Guest Interceptor
catches the request and prepares it to be accepted by the endpoint.

First, the interceptor reads the configured policy, builds a security header, and gets an anonymous
SAML assertion. Using this, it makes a getSubject call which is sent through Shiro to the STS realm.

386

Upon success, the STS realm returns the subject and the call is made to the endpoint.

26.8. Security PEP

The Security Policy Enforcement Point (PEP) application contains bundles that allow for policies to be
enforced at various parts of the system, for example: to reach contexts, view metacards, access catalog
operations, and others.

26.8.1. Security PEP Interceptor

The Security PEP Interceptor bundle contains the
ddf.security.pep.interceptor.PEPAuthorizingInterceptor class. This class uses CXF to intercept
incoming SOAP messages and enforces service authorization policies by sending the service request to
the security framework.

26.8.1.1. Installing the Security PEP Interceptor

This bundle is not installed by default but can be added by installing the security-pep-serviceauthz
feature.

To perform service authorization within a default install of DDF, this bundle

WARNING
MUST be installed.

26.8.1.2. Configuring the Security PEP Interceptor

The Security PEP Interceptor has no configurable properties.

26.9. Filtering

Metacard filtering is performed by the Filter Plugin after a query has been performed, but before the
results are returned to the requestor.

Each metacard result will contain security attributes that are populated by the CatalogFramework
based on the PolicyPlugins (Not provided! You must create your own plugin for your specific
metadata!) that populates this attribute. The security attribute is a HashMap containing a set of keys
that map to lists of values. The metacard is then processed by a filter plugin that creates a
KeyValueCollectionPermission from the metacard’s security attribute. This permission is then checked
against the user subject to determine if the subject has the correct claims to view that metacard. The
decision to filter the metacard eventually relies on the PDP (feature:install security-pdp-authz). The
PDP returns a decision, and the metacard will either be filtered or allowed to pass through.

The security attributes populated on the metacard are completely dependent on the type of the
metacard. Each type of metacard must have its own PolicyPlugin that reads the metadata being
returned and returns the metacard’s security attribute. If the subject permissions are missing during
filtering, all resources will be filtered.

387

Example (represented as simple XML for ease of understanding):

<metacard>
<security>
<map>
<entry key="entry1" value="A,B" />
<entry key="entry2" value="X,Y" />
<entry key="entry3" value="USA,GBR" />
<entry key="entry4" value="USA,AUS" />
</map>
</security>
</metacard>

<user>
<claim name="claim1">
<value>A</value>
<value>B</value>
</claim>
<claim name="claim2">
<value>X</value>
<value>Y</value>
</claim>
<claim name="claim3">
<value>USA</value>
</claim>
<claim name="claim4">
<value>USA</value>
</claim>
</user>

In the above example, the user’s claims are represented very simply and are similar to how they would
actually appear in a SAML 2 assertion. Each of these user (or subject) claims will be converted to a
KeyValuePermission object. These permission objects will be implied against the permission object
generated from the metacard record. In this particular case, the metacard might be allowed if the
policy is configured appropriately because all of the permissions line up correctly.

To enable filtering on a new type of record, implement a PolicyPlugin that is able to read the string
metadata contained within the metacard record. Note that, in DDF, there is no default plugin that
parses a metacard. A plugin must be created to create a policy for the metacard.

26.10. Expansion Service

The Expansion Service and its corresponding expansion-related commands provide an easy way for
developers to add expansion capabilities to DDF during user attribute and metadata card processing.
In addition to these two defined uses of the expansion service, developers are free to utilize the service

388

in their own implementations.

Expansion Service Rulesets

Each instance of the expansion service consists of a collection of rulesets. Each ruleset consists of a key
value and its associated set of rules. Callers of the expansion service provide a key and a value to be
expanded. The expansion service then looks up the set of rules for the specified key. The expansion
service cumulatively applies each of the rules in the set, starting with the original value. The result is
returned to the caller.

Table 81. Expansion Service Ruleset Format

Key (Attribute) Rules (original — new)
key1 valueT replacement
value2 replacement?
value3 replacement3
key2 valueT replacement
value2 replacement?2
Included Expansions

Note that the rules listed for each key are processed in order, so they may build upon each other, i.e., a
new value from the new replacement string may be expanded by a subsequent rule. In the example
Location:Goodyear would expand to Goodyear AZ USA and Title:VP-Sales would expand to VP-Sales VP
Sales.

To use the expansion service, modify the following two files within the <DDF_HOME>/etc/pdp directory:

o <DDF_HOME>/etc/pdp/ddf-metacard-attribute-ruleset.cfg
o <DDF_HOME>/etc/pdp/ddf-user-attribute-ruleset.cfg

The examples below use the following collection of rulesets:

Table 82. Expansion Service Example Ruleset

Key (Attribute) Rules (original - new)
Location Goodyear Goodyear AZ
AZ AZ USA
CA CA USA
Title VP-Sales VP-Sales VP Sales
VP-Engineering VP-Engineering VP Engineering

It is expected that multiple instances of the expansion service will be running at the same time. Each
instance of the service defines a unique property that is useful for retrieving specific instances of the
expansion service. There are two pre-defined instances used by DDF: one for expanding user attributes
and one for metacard attributes.

389

Property Value Description
Name

mapping security.user.attribute.mapping This instance is configured with rules that expand the
user’s attribute values for security checking.

mapping security.metacard.attribute.map This instance is configured with rules that expand the
P1Ng metacard’s security attributes before comparing with
the user’s attributes.

Expansion Service Configuration Files

Additional instance of the expansion service can be configured using a configuration file. The
configuration file can have three different types of lines:

comments

any line prefixed with the # character is ignored as a comment (for readability, blank lines are also
ignored)

attribute separator

a line starting with separator= defines the attribute separator string.

rule

all other lines are assumed to be rules defined in a string format <key>:<original value>:<new
value>

The following configuration file defines the rules shown above in the example table (using the space as
a separator):

390

Sample Expansion Configuration File

This defines the separator that will be used when the expansion string contains
multiple

values - each will be separated by this string. The expanded string will be split at
the

separator string and each resulting attribute added to the attribute set (duplicates
are

suppressed). No value indicates the default value of ' ' (space).

separator=

The following rules define the attribute expansion to be performed. The rules are of
the

form:

i <attribute name>:<original value>:<expanded value>

The rules are ordered, so replacements from the first rules may be found in the
original

values of subsequent rules.

Location:Goodyear:Goodyear AZ

Location:AZ:AZ USA

Location:CA:CA USA

Title:VP-Sales:VP-Sales VP Sales

Title:VP-Engineering:VP-Engineering VP Engineering

Expansion Commands

DDF includes commands to work with the Expansion service.

Table 83. Included Expansion Commands

Title Namespace Description

DDF::Security::Expansion::C security The expansion commands provide detailed information

ommands about the expansion rules in place and the ability to see
the results of expanding specific values against the active
ruleset.

Command Description Sample Input Results

391

security:expan Runs the expansion ddf@local>security:ex [Goodyear, USA, AZ]
pand Location

service on the
Goodyear

provided data

returning the

expanded value. It ddf@local>security:ex [VP-Engineering, Engineering, VP]
takes an attribute and Ppand Title VP-

an original value, SETECAINE

expands the original

value using the ddf@local>expand [VP-Engineering, Engineering, VP,

current expansion Title "VP-Engineering Manager]

service and ruleset Manager

and dumps the results.
security:expan Displays the ruleset Expansion service [Location : Goodyear : Goodyear AZ
sions . configured: Location : AZ : AZ USA

s each actlve. Location : CA : CA USA

expansion service. ddf@local>security:ex Title : VP-Sales : VP-Sales VP Sales

pansions Title : VP-Engineering : VP-

Engineering VP Engineering]

No active expansion No expansion services currently
service: available.

ddf@local>security:ex
pansions

26.11. Security Token Service

The Security Token Service (STS) is a service running in DDF that generates SAML v2.0 assertions.
These assertions are then used to authenticate a client allowing them to issue other requests, such as
ingests or queries to DDF services.

The STS is an extension of Apache CXF-STS. It is a SOAP web service that utilizes WS-Trust. The
generated SAML assertions contain attributes about a user and is used by the Policy Enforcement Point
(PEP) in the secure endpoints. Specific configuration details on the bundles that come with DDF can be
found on the Security STS application page. This page details all of the STS components that come out
of the box with DDF, along with configuration options, installation help, and which services they
import and export.

The STS server contains validators, claim handlers, and token issuers to process incoming requests.
When a request is received, the validators first ensure that it is valid. The validators verify
authentication against configured services, such as LDAP, DIAS, PKI. If the request is found to be
invalid, the process ends and an error is returned. Next, the claims handlers determine how to handle
the request, adding user attributes or properties as configured. The token issuer creates a SAML 2.0
assertion and associates it with the subject. The STS server sends an assertion back to the requestor,
which is used to authenticate and authorize subsequent SOAP and REST requests.

The STS can be used to generate SAML v2.0 assertions via a SOAP web service request. Out of the box,
the STS supports authentication from existing SAML tokens, username/password, and x509 certificates.
It also supports retrieving claims using LDAP and properties files.

392

26.11.1. STS Claims Handlers

Claims handlers are classes that convert the incoming user credentials into a set of attribute claims
that will be populated in the SAML assertion. An example in action would be the LDAPClaimsHandler
that takes in the user’s credentials and retrieves the user’s attributes from a backend LDAP server.
These attributes are then mapped and added to the SAML assertion being created. Integrators and
developers can add more claims handlers that can handle other types of external services that store
user attributes.

26.11.2. Security STS

The Security STS application contains the bundles and services necessary to run and talk to a Security
Token Service (STS). It builds off of the Apache CXF STS code and adds components specific to DDF
functionality.

Table 84. Security STS Components

Bundle Name Located in Description/Link to Bundle Page
Feature

security-sts-realm security-sts-realm Security STS Realm

security-sts- security-sts- Security STS LDAP Login

ldaplogin ldaplogin

security-sts- security-sts- Security STS LDAP Claims Handler

ldapclaimshandler 1ldapclaimshandler

security-sts- security-sts- Security STS Server

server server

security-sts- security-sts- Contains the default CXF SAML validator and exposes it as a
samlvalidator server service for the STS.

security-sts- security-sts- Contains the default CXF x509 validator and exposes it as a
x509validator server

service for the STS.

26.11.3. Security STS Client Config

The Security STS Client Config bundle keeps track and exposes configurations and settings for the CXF
STS client. This client can be used by other services to create their own STS client. Once a service is
registered as a watcher of the configuration, it will be updated whenever the settings change for the sts
client.

26.11.3.1. Installing the Security STS Client Config

This bundle is installed by default.

26.11.3.2. Configuring the Security STS Client Config

Configure the Security STS Client Config from the Admin Console:

393

1. Navigate to the Admin Console.
2. Select Security Application.
3. Select Configuration tab.

4. Select Security STS Client.

See Security STS Client configurations for all possible configurations.

26.11.4. External/WS-S STS Support

This configuration works just like the STS Client Config for the internal STS, but produces standard
requests instead of the custom DDF ones. It supports two new auth types for the context policy
manager, WSSBASIC and WSSPKI. Use these auth types when connecting to a non-DDF STS or if
ignoring realms.

26.11.4.1. Security STS Address Provider

This allows one to select which STS address will be used (e.g. in SOAP sources) for clients of this
service. Default is off (internal).

26.11.5. Security STS LDAP Login

The Security STS LDAP Login bundle enables functionality within the STS that allows it to use an LDAP
to perform authentication when passed a UsernameToken in a RequestSecurityToken SOAP request.

26.11.5.1. Installing the Security STS LDAP Login

This bundle is not installed by default but can be added by installing the security-sts-1daplogin
feature.

26.11.5.2. Configuring the Security STS LDAP Login

Configure the Security STS LDAP Login from the Admin Console:
1. Navigate to the Admin Console.
2. Select Security Application.

3. Select Configuration tab

4. Select Security STS LDAP Login.

Table 85. Security STS LDAP Login Settings

Configuration Name Default Value Additional Information
LDAP URL 1daps://${org.codice.ddf.system

.hostname}: 1636
StartTLS false Ignored if the URL uses ldaps.

394

Configuration Name Default Value Additional Information

LDAP Bind User DN cn=admin This user should have the ability
to verify passwords and read
attributes for any user.

LDAP Bind User Password secret This password value is encrypted
by default using the Security
Encryption application.

LDAP Group User Membership ~ uid Attribute used as the

Attribute membership attribute for the
user in the group. Usually this is
uid, cn, or something similar.

LDAP User Login Attribute uid Attribute used as the login
username. Usually this is uid, cn,
or something similar.

LDAP Base User DN ou=users,dc=example,dc=com

LDAP Base Group DN ou=groups,dc=example,dc=com

26.11.6. Security STS LDAP Claims Handler

The Security STS LDAP Claims Handler bundle adds functionality to the STS server that allows it to
retrieve claims from an LDAP server. It also adds mappings for the LDAP attributes to the STS SAML
claims.

All claims handlers are queried for user attributes regardless of realm. This means that
NOTE two different users with the same username in different LDAP servers will end up with
both of their claims in each of their individual assertions.

26.11.6.1. Installing Security STS LDAP Claims Handler

This bundle is not installed by default and can be added by installing the security-sts-
ldapclaimshandler feature.

26.11.6.2. Configuring the Security STS LDAP Claims Handler

Configure the Security STS LDAP Claims Handler from the Admin Console:

1. Navigate to the Admin Console.
2. Select Security Application
3. Select Configuration tab.

4. Select Security STS LDAP and Roles Claims Handler.

Table 86. Security STS LDAP Claims Handler Settings

395

Configuration Name

LDAP URL

StartTLS

LDAP Bind User DN

LDAP Bind User Password

LDAP Username Attribute
LDAP Base User DN
LDAP Group ObjectClass

LDAP Membership Attribute

LDAP Base Group DN
User Attribute Map File

Default Value

1daps://${org.codice.ddf.system
.hostname}: 1636

false

cn=admin

secret

uid
ou=users,dc=example,dc=com

groupOfNames

member

ou=groups,dc=example,dc=com

etc/ws-
security/attributeMap.propertie
S

Table 87. Security STS LDAP Claims Handler Imported Services

Registered Interface

Availability

ddf.security.encryption.Encrypt optional

ionService

Table 88. Security STS LDAP Claims Handler Exported Services

Registered Interface

Implementation Class

org.apache.cxf.sts.claims.Claim ddf.security.sts.claimsHandler.

sHandler

LdapClaimsHandler

org.apache.cxf.sts.claims.claim ddf.security.sts.claimsHandler.

sHandler

RoleClaimsHandler

26.11.7. Security STS Server

Additional Information

Ignored if the URL uses ldaps.

This user should have the ability
to verify passwords and read
attributes for any user.

This password value is encrypted
by default using the Security
Encryption application.

Object(Class that defines
structure for group membership
in LDAP. Usually this is

groupOfNames or
groupOfUniqueNames

Attribute used to designate the
user’s name as a member of the
group in LDAP. Usually this is
member or uniqueMember

Properties file that contains
mappings from Claim=LDAP
attribute.

Multiple

false

Properties Set

Properties from the settings

Properties from the settings

The Security STS Server is a bundle that starts up an implementation of the CXF STS. The STS obtains
many of its configurations (Claims Handlers, Token Validators, etc.) from the OSGi service registry as
those items are registered as services using the CXF interfaces. The various services that the STS Server

396

imports are listed in the Implementation Details section of this page.

NOTE

The WSDL for the STS is located at the security-sts-server/src/main/resources/META-

INF/sts/wsdl/ws-trust-1.4-service.wsdl within the source code.

26.11.7.1. Installing the Security STS Server

This bundle is installed by default and is required for DDF to operate.

26.11.7.2. Configuring the Security STS Server

Configure the Security STS Server from the Admin Console:

1. Navigate to the Admin Console.
2. Select Security Application
3. Select Configuration tab.

4. Select Security STS Server.

Table 89. Security STS Server Settings

Configuration Name Default
Value

SAML Assertion 1800
Lifetime

Token Issuer https://${o
rg.codice.d

df.system.h
ostname}: ${
org.codice.
ddf.system.
httpsPort}$
{org.codice
.ddf.system
.rootContex
t}/idp/
login

Signature Username localhost

Encryption Username localhost

26.11.8. Security STS Service

Additional Information

The name of the server issuing tokens. Generally this is unique
identifier of this IdP.

Alias of the private key in the STS Server’s keystore used to sign
messages.

Alias of the private key in the STS Server’s keystore used to
encrypt messages.

The Security STS Service performs authentication of a user by delegating the authentication request to
an STS. This is different than the services located within the Security PDP application as those ones
only perform authorization and not authentication.

397

https://${org.codice.ddf.system.hostname}:${org.codice.ddf.system.httpsPort}${org.codice.ddf.system.rootContext}/idp/login
https://${org.codice.ddf.system.hostname}:${org.codice.ddf.system.httpsPort}${org.codice.ddf.system.rootContext}/idp/login
https://${org.codice.ddf.system.hostname}:${org.codice.ddf.system.httpsPort}${org.codice.ddf.system.rootContext}/idp/login
https://${org.codice.ddf.system.hostname}:${org.codice.ddf.system.httpsPort}${org.codice.ddf.system.rootContext}/idp/login
https://${org.codice.ddf.system.hostname}:${org.codice.ddf.system.httpsPort}${org.codice.ddf.system.rootContext}/idp/login
https://${org.codice.ddf.system.hostname}:${org.codice.ddf.system.httpsPort}${org.codice.ddf.system.rootContext}/idp/login
https://${org.codice.ddf.system.hostname}:${org.codice.ddf.system.httpsPort}${org.codice.ddf.system.rootContext}/idp/login
https://${org.codice.ddf.system.hostname}:${org.codice.ddf.system.httpsPort}${org.codice.ddf.system.rootContext}/idp/login
https://${org.codice.ddf.system.hostname}:${org.codice.ddf.system.httpsPort}${org.codice.ddf.system.rootContext}/idp/login
https://${org.codice.ddf.system.hostname}:${org.codice.ddf.system.httpsPort}${org.codice.ddf.system.rootContext}/idp/login
https://${org.codice.ddf.system.hostname}:${org.codice.ddf.system.httpsPort}${org.codice.ddf.system.rootContext}/idp/login
https://${org.codice.ddf.system.hostname}:${org.codice.ddf.system.httpsPort}${org.codice.ddf.system.rootContext}/idp/login
https://${org.codice.ddf.system.hostname}:${org.codice.ddf.system.httpsPort}${org.codice.ddf.system.rootContext}/idp/login
https://${org.codice.ddf.system.hostname}:${org.codice.ddf.system.httpsPort}${org.codice.ddf.system.rootContext}/idp/login
https://${org.codice.ddf.system.hostname}:${org.codice.ddf.system.httpsPort}${org.codice.ddf.system.rootContext}/idp/login

26.11.8.1. Installing the Security STS Realm

This bundle is installed by default and should not be uninstalled.

26.11.8.2. Configuring the Security STS Realm
The Security STS Realm has no configurable properties.

Table 90. Security STS Realm Imported Services

Registered Interface Availability Multiple
ddf.security.encryption.Encrypt optional false
ionService

Table 91. Security STS Realm Exported Services

Registered Interfaces Implementation Class Properties Set

org.apache.shiro.realm.Realm ddf.security.realm.sts.StsRealm None

26.12. Federated Identity

Each instance of DDF may be configured with its own security policy that determines the resources a
user may access and the actions they may perform. To decide whether a given request is permitted,
DDF references the SAML assertion stored internally in the requestor’s Subject. This assertion is
generated by the STS during authentication and contains a collection of attributes that identify the
requestor. Based on these attributes and the configured policy, DDF makes an authorization decision.
See Security PDP for more information.

This authorization process works when the requestor authenticates directly with DDF as they are
guaranteed to have a Subject. However, when federating, DDF proxies requests to federated Sources
and this poses a problem. The requestor doesn’t authenticate with federated Sources, but Sources still
need to make authorization decisions.

To solve this problem, DDF uses federated identity. When performing any federated request (query,
resource retrival, etc), DDF attaches the requestor’s SAML assertion to the outgoing request. The
federated Source extracts the assertion and validates its signature to make sure it was generated by a
trusted entity. If so, the federated Source will construct a Subject for the requestor and perform the
request using that Subject. The Source can then make authorization decisions using the process
already described.

How DDF attaches SAML assertions to federated requests depends on the endpoint used to connect to a
federated Source. When using a REST endpoint such as CSW, DDF places the assertion in the HTTP
Authorization header. When using a SOAP endpoint, it places the assertion in the SOAP security
header.

The figure below shows a federated query between two instances of DDF that support federated
identity.

398

DDF Federated Source

Send request to
Search Catalog Framework ‘ Recreate Subject ‘
* Query *

Create HTTP request & ‘ Run query as Subject ‘
attach SAML assertion *

Filter results +— ‘ Filter results ‘
Filtered
results

. A user submits a search to DDF.

. DDF generates a catalog request, attaches the user’s Subject, and sends the request to the Catalog
Framework.

. The Catalog Framework extracts the SAML assertion from the Subject and sends an HTTP request
to each federated Source with the assertion attached.

. A federated Source receives this request and extracts the SAML assertion. The federated Source
then validates the authenticity of the SAML Assertion. If the assertion is valid, the federated Source
generates a Subject from the assertion to represent the user who initiated the request.

. The federated Source filters all results that the user is not authorized to view and returns the rest to
DDF.

. DDF takes the results from all Sources, filters those that the user is not authorized to view and
returns the remaining results to the user.

With federated identity, results are filtered both by the federated Source and client

NOTE
DDF. This is important as each may have different authorization policies.

Support for federated identity was added in DDF 2.8.x. Federated Sources older
WARNING than this will not perform any filtering. Instead, they will return all available
results and leave filtering up to the client.

27. Developing DDF Components

Create custom implementations of DDF components.

27.1. Developing Complementary Catalog Frameworks

DDF and the underlying OSGi technology can serve as a robust infrastructure for developing

frameworks that complement the Catalog.

399

27.1.1. Simple Catalog API Implementations

The Catalog API implementations, which are denoted with the suffix of Impl on the Java file names,
have multiple purposes and uses:

* First, they provide a good starting point for other developers to extend functionality in the
framework. For instance, extending the MetacardImpl allows developers to focus less on the inner
workings of DDF and more on the developer’s intended purposes and objectives.

* Second, the Catalog API Implementations display the proper usage of an interface and an
interface’s intentions. Also, they are good code examples for future implementations. If a developer
does not want to extend the simple implementations, the developer can at least have a working
code reference on which to base future development.

27.1.2. Use of the Whiteboard Design Pattern

The Catalog makes extensive use of the Whiteboard Design Pattern. Catalog Components are registered
as services in the OSGi Service Registry, and the Catalog Framework or any other clients tracking the
OSGi Service Registry are automatically notified by the OSGi Framework of additions and removals of
relevant services.

The Whiteboard Design Pattern is a common OSGi technique that is derived from a
technical whitepaper provided by the OSGi Alliance in 2004. It is recommended to use the Whiteboard
pattern over the Listener pattern in OSGi because it provides less complexity in code (both on the
client and server sides), fewer deadlock possibilities than the Listener pattern, and closely models the
intended usage of the OSGi framework.

27.1.3. Recommendations for Framework Development

* Provide extensibility similar to that of the Catalog.

- Provide a stable API with interfaces and simple implementations (refer to http://www.ibm.com/
developerworks/websphere/techjournal/1007_charters/1007_charters.html).

* Make use of the Catalog wherever possible to store, search, and transform information.

Utilize OSGi standards wherever possible.
o ConfigurationAdmin

o MetaType

Utilize the sub-frameworks available in DDF.
o Karaf
o CXF
o PAX Web and Jetty

400

http://www.ibm.com/developerworks/websphere/techjournal/1007_charters/1007_charters.html
http://www.ibm.com/developerworks/websphere/techjournal/1007_charters/1007_charters.html
http://www.ibm.com/developerworks/websphere/techjournal/1007_charters/1007_charters.html
http://www.ibm.com/developerworks/websphere/techjournal/1007_charters/1007_charters.html
http://www.ibm.com/developerworks/websphere/techjournal/1007_charters/1007_charters.html
http://www.ibm.com/developerworks/websphere/techjournal/1007_charters/1007_charters.html
http://www.ibm.com/developerworks/websphere/techjournal/1007_charters/1007_charters.html
http://www.ibm.com/developerworks/websphere/techjournal/1007_charters/1007_charters.html
http://www.ibm.com/developerworks/websphere/techjournal/1007_charters/1007_charters.html
http://www.ibm.com/developerworks/websphere/techjournal/1007_charters/1007_charters.html
http://www.ibm.com/developerworks/websphere/techjournal/1007_charters/1007_charters.html

27.1.4. Catalog Framework Reference
The Catalog Framework can be requested from the OSGi Service Registry.

Blueprint Service Reference

<reference id="catalogFramework" interface="DDF.catalog.CatalogFramework" />

27.1.4.1. Methods

The CatalogFramework provides convenient methods to transform Metacards and QueryResponses using a
reference to the CatalogFramework.

27.1.4.1.1. Create, Update, and Delete Methods

Create, Update, and Delete (CUD) methods add, change, or remove stored metadata in the local Catalog
Provider.

Example Create, Update, Delete Methods

public CreateResponse create(CreateRequest createRequest) throws IngestException,
SourceUnavailableException;
public UpdateResponse update(UpdateRequest updateRequest) throws IngestException,
SourceUnavailableException;
public DeleteResponse delete(DeleteRequest deleteRequest) throws IngestException,
SourceUnavailableException;

CUD operations process PolicyPlugin, AccessPlugin, and PreIngestPlugin instances before execution
and PostIngestPlugin instances after execution.

27.1.4.1.2. Query Methods

Query methods search metadata from available Sources based on the QueryRequest properties
and Federation Strategy. Sources could include Catalog Provider, Connected Sources, and Federated
Sources.

Example Query Methods

public QueryResponse query(QueryRequest query) throws UnsupportedQueryException
,SourceUnavailableException, FederationException;

public QueryResponse query(QueryRequest queryRequest, FederationStrategy strategy) throws
SourceUnavailableException, UnsupportedQueryException, FederationException;

Query requests process PolicyPlugin, AccessPlugin, and PreQueryPlugin instances before execution
and PolicyPlugin, AccessPlugin, and PostQueryPlugin instances after execution.

401

27.1.4.1.3. Resource Methods

Resource methods retrieve products from Sources.

Example Resource Methods

public ResourceResponse getEnterpriseResource(ResourceRequest request) throwsIOException,
ResourceNotFoundException, ResourceNotSupportedException;

public ResourceResponse getlLocalResource(ResourceRequest request) throws IOException,
ResourceNotFoundException, ResourceNotSupportedException;

public ResourceResponse getResource(ResourceRequest request, String resourceSiteName)
throws IOException, ResourceNotFoundException, ResourceNotSupportedException;

Resource requests process “PreResourcePlugin’s before execution and "PostResourcePlugin’s after
execution.

27.1.4.1.4. Source Methods

Source methods can get a list of Source identifiers or request descriptions about Sources.

Example Source Methods

public Set<String> getSourcelds();
public SourceInfoResponse getSourceInfo(SourceInfoRequest sourceInfoRequest) throws
SourceUnavailableException;

27.1.4.1.5. Transform Methods

Transform methods provide convenience methods for using Metacard Transformersand Query
Response Transformers.

Transform Methods
// Metacard Transformer
public BinaryContent transform(Metacard metacard, String transformerId, Map<String
,Serializable> requestProperties) throws CatalogTransformerException;
// Query Response Transformer

public BinaryContent transform(SourceResponse response, String transformerId, Map<String,
Serializable> requestProperties) throws CatalogTransformerException;

27.1.4.2. Implementing Catalog Methods

402

Query Response Transform Example

// inject CatalogFramework instance or retrieve an instance
private CatalogFramework catalogFramework;

public RSSEndpoint(CatalogFramework catalogFramework)
{
this.catalogFramework = catalogFramework ;
// implementation
// Other implementation details ...
private void convert(QueryResponse queryResponse) {
/] ..

String transformerId = "rss";

BinaryContent content = catalogFramework.transform(queryResponse, transformerId,
null);

/] ...

27.1.4.3. Dependency Injection

Using Blueprint or another injection framework, transformers can be injected from the OSGi Service
Registry.

Blueprint Service Reference

<reference id="[[Reference Id" interface="DDF.catalog.transform.[[Transformer Interface
Name]]" filter="(shortname=[[Transformer Identifier]])" />

Each transformer has one or more transform methods that can be used to get the desired output.

Input Transformer Example
DDF.catalog.transform.InputTransformer inputTransformer = retrieveInjectedInstance() ;

Metacard entry = inputTransformer.transform(messageInputStream);

403

Metacard Transformer Example

DDF.catalog.transform.MetacardTransformer metacardTransformer = retrieveInjectedInstance

0

BinaryContent content = metacardTransformer.transform(metacard, arguments);

Query Response Transformer Example

DDF.catalog.transform.QueryResponseTransformer queryResponseTransformer =
retrieveInjectedInstance() ;

BinaryContent content = queryResponseTransformer.transform(sourceSesponse, arguments);

27.1.4.4. OSGi Service Registry

In the vast majority of cases, working with the OSGi Service Reference directly
IMPORTANT should be avoided. Instead, dependencies should be injected via a dependency
injection framework like Blueprint.

Transformers are registered with the OSGi Service Registry. Using a BundleContext and a filter,
references to a registered service can be retrieved.

OSGi Service Registry Reference Example
ServiceReference[] refs =
bundleContext.getServiceReferences(DDF.catalog.transform.InputTransformer.class
.getName(),"(shortname=" + transformerId + ")");

InputTransformer inputTransformer = (InputTransformer) context.getService(refs[0]);
Metacard entry = inputTransformer.transform(messageInputStream);

27.2. Developing Metacard Types

Create custome Metacard types with Metacard Type definition files.

27.2.1. Metacard Type Definition File

To define Metacard Types, the definition file must have a metacardTypes key in the root object.

"metacardTypes": [...]

404

The value of metacardTypes must be an array of Metacard Type Objects, which are composed of the type
(required), extendsTypes (optional), and attributes (optional) keys.

Sample Top Level metacardTypes Definition

{
"metacardTypes": [
{
"type": "my-metacard-type",
"extendsTypes": ["core", "security"],
"attributes": {...}
}
]
}

The value of the type key is the name of the metacard type being defined. This field is required.

The value of the extendsTypes Kkey is an array of metacard type names (strings) whose attributes you
wish to include in your type. Valid Metacard Types already defined in the system or any Metacard
Types already defined in this file will work. Please note this section is evaluated from top to bottom so
order any types used in other definitions above where they are used in the extendsTypes of other
definitions. This key and value may be completely omitted to not extend any types.

The value of the attributes key is a map where each key is the name of an attribute type to include in
this metacard type and each value is a map with a single key named required and a boolean value.
Required attributes are used for metacard validation - metacards that lack required attributes will be
flagged with validation errors. attributes may be completely omitted. required may be omitted.

405

Sample Complete metacardTypes Definition

"metacardTypes": [
{
"type": "my-metacard-type",
"attributes": {
"resolution": {
"required": true
¥
"target-areas": {
"required": false
b
"expiration": {3},
"point-of-contact": {
"required": true

}

The DDF basic metacard attribute types are added to custom metacard types by default.
If any attribute types are required by a metacard type, just include them in the

attributes map and set required to true, as shown in the above example with point-of-
contact.

NOTE

406

Multiple Metacard Types in a Single File

{
"metacardTypes": [
{
"type": "my-metacard-type",
"attributes": {
"resolution": {
"required": true
¥
"target-areas": {
"required": false
}
}
I#
{
"type": "another-metacard-type",
"attributes": {
"effective": {
"required": true
s
"resolution": {
"required": false
}
}
}
]
}

27.3. Developing Global Attribute Validators

27.3.1. Global Attribute Validators File

To define Validators, the definition file must have a validators key in the root object.

"validators": {...}

The value of validators is a map of the attribute name to a list of validators for that attribute.

407

"validators": {
"point-of-contact": [...]

}

Each object in the list of validators is the validator name and list of arguments for that validator.

{
"validators": {
"point-of-contact": [
{
"validator": "pattern",
"arguments": [".*regex.+\\s"]
¥
1
}
}
The value of the arguments key must always be an array of strings, even for
WARNING

numeric arguments, e.g. ["1", "10"]

The validator key must have a value of one of the following:

408

1. validator Possible Values

* size (validates the size of Strings, Arrays, Collections, and Maps)
o arguments: (2) [integer: lower bound (inclusive), integer: upper bound (inclusive)]

= lower bound must be greater than or equal to zero and the upper bound must be
greater than or equal to the lower bound

« pattern
o arguments: (1) [regular expression]
o pastdate
o arguments: (0) [NO ARGUMENTS]
« futuredate
o arguments: (0) [NO ARGUMENTS]
« range

o (2) [number (decimal or integer): inclusive lower bound, number (decimal or integer):
inclusive upper bound]

= uses a default epsilon of 1E-6 on either side of the range to account for floating point
representation inaccuracies

> (3) [number (decimal or integer): inclusive lower bound, number (decimal or integer):
inclusive upper bound, decimal number: epsilon (the maximum tolerable error on either
side of the range)]

o enumeration

o arguments: (unlimited) [list of strings: each argument is one case-sensitive, valid
enumeration value]

« relationship
o arguments: (4+) [attribute value or null, one of mustHave | cannotHave | canOnlyHave, target
attribute name, null or target attribute value(s) as additional arguments]
« match_any

o validators: (unlimited) [list of previously defined validators: valid if any validator
succeeds]

Example Validator Definition

"validators": {
"title": [
{
"validator": "size",
"arquments": ["1", "50"]

}

409

410

"validator":
"arguments":
¥
1.
"created": [
{
"validator":
"arquments"”:
}
1

"expiration": [

{

"validator":
"arguments":

¥
1
"page-count": [

{

"validator":
"arquments"”:

}
]I

"temperature": [

{

"validator":
"arguments":

}
]

esolution": [

{

"validator":
"arquments"”:

}
]

atatype": [
{

"validator":

"pattern”,
[ll\\D+ll]

"pastdate”,
[]

"futuredate",

[]

"range"”,
["1"’ |l500|l]

"range",
[n12.2n’ “19.8", H0.01"]

"enumeration",
["1@8®p", "1@801", u72@pn]

"match_any",

"validators": [

{

"validator": "range",

"arquments":

["1", "25"]

"validator": "enumeration",

"arguments":

["Collection", "Dataset", "Event"]

}

1,
"topic.vocabulary": [
{
"validator": "relationship",
"arquments": ["animal", "canOnlyHave", "topic.category", "cat", "dog",
"1izard"]
}
]

27.4. Developing Attribute Types

Create custom attribute types with Attribute Type definition files.

27.4.1. Attribute Type Definition File

To define Attribute Types, the definition file must have an attributeTypes key in the root object.

"attributeTypes": {...}

The value of attributeTypes must be a map where each key is the attribute type’s name and each value
is a map that includes the data type and whether the attribute type is stored, indexed, tokenized, or

multi-valued.

Attribute Types

{
"attributeTypes": {
"temperature": {
"type": "DOUBLE_TYPE",
"stored": true,
"indexed": true,
"tokenized": false,
"multivalued": false
}
}
}

The attributes stored, indexed, tokenized, and multivalued must be included and must have a boolean
value.

411

2. Required Attribute Definitions

stored

If true, the value of the attribute should be stored in the underlying datastore. Some attributes
may only be indexed or used in transit and do not need to be persisted.

indexed

If true, then the value of the attribute should be included in the datastore’s index and therefore
be part of query evaluation.

tokenized

Only applicable to STRING_TYPE attributes, if true then stopwords and punctuation will be
stripped prior to storing and/or indexing. If false, only an exact string will match.

multi-valued
If true, then the attribute values will be Lists of the attribute type rather than single values.

The type attribute must also be included and must have one of the allowed values:

3. type Attribute Possible Values

o DATE_TYPE

o STRING_TYPE
o XML_TYPE

o LONG_TYPE

« BINARY_TYPE
o GEO_TYPE

» BOOLEAN_TYPE
o DOUBLE_TYPE
o FLOAT_TYPE

o INTEGER_TYPE
o OBJECT_TYPE
o SHORT_TYPE

An example with multiple attributes defined:

412

Multiple Attributes Defined

{
"attributeTypes": {

"resolution": {
"type": "STRING_TYPE",
"stored": true,
"indexed": true,
"tokenized": false,
"multivalued": false

I

"target-areas": {
"type": "GEO_TYPE",
"stored": true,
"indexed": true,
"tokenized": false,
"multivalued": true

27.5. Developing Default Attribute Types

Create custom default attribute types.

27.5.1. Default Attribute Values

To define default attribute values, the definition file must have a defaults key in the root object.

"defaults": [...]

The value of defaults is a list of objects where each object contains the keys attribute, value, and
optionally metacardTypes.

413

"defaults": [
{
"attribute": ...,
"value": ...,

"metacardTypes": [...]

The value corresponding to the attribute key is the name of the attribute to which the default value
will be applied. The value corresponding to the value key is the default value of the attribute.

The attribute’s default value must be of the same type as the attribute, but it has to be

NOTE written as a string (i.e., enclosed in quotation marks) in the JSON file.

Dates must be UTC datetimes in the ISO 8601 format, i.e., yyyy-MM-ddTHH :mm: ssZ

The metacardTypes Kkey is optional. If it is left out, then the default attribute value will be applied to
every metacard that has that attribute. It can be thought of as a 'global' default value. If the
metacardTypes key is included, then its value must be a list of strings where each string is the name of a
metacard type. In this case, the default attribute value will be applied only to metacards that match
one of the types given in the list.

In the event that an attribute has a 'global’ default value as well as a default value for a
NOTE specific metacard type, the default value for the specific metacard type will be applied

(i.e., the more specific default value wins).

Example:

414

"defaults": [

{
"attribute": "title",

"value": "Default Title"

I

{
"attribute": "description",
"value": "Default video description”,
"metacardTypes": ["video"]

H

{
"attribute": "expiration",
"value": "2020-05-06T12:00:007",
"metacardTypes": ["video", "nitf"]

H

{
"attribute": "frame-rate",
"value": "30"

}

27.6. Developing Attribute Injections

Attribute injections are defined attributes that will be injected into all metacard types or into specific
metacard types. This capability allows metacard types to be extended with new attributes.

27.6.1. Attribute Injection Definition

To define attribute injections, create a JSON file in the <DDF_HOME>/etc/definitions directory. The
definition file must have an inject key in the root object.

Inject Key
{
“inject": [...]
}

The value of inject is simply a list of objects where each object contains the key attribute and
optionally metacardTypes.

415

Inject Values

{
"inject": [
{
"attribute": ...,
"metacardTypes": [...]
}
]
+

The value corresponding to the attribute key is the name of the attribute to inject.

The metacardTypes key is optional. If it is left out, then the attribute will be injected into every metacard
type. In that case it can be thought of as a 'global' attribute injection. If the metacardTypes key is
included, then its value must be a list of strings where each string is the name of a metacard type. In
this case, the attribute will be injected only into metacard types that match one of the types given in
the list.

Global and Specific Inject Values

{
"inject": [
// Global attribute injection, all metacards
{
"attribute": "rating"
}
// Specific attribute injection, only "video" metacards
{
"attribute": "cloud-cover",
"metacardTypes": "video"
}
]
}

Attributes must be registered in the attribute registry (see the AttributeRegistry
NOTE interface) to be injected into metacard types. For example, attributes defined in JSON
definition files are placed in the registry, so they can be injected.

Add a second key for attributeTypes to register the new types defined previously. For each attribute
injections, specify the name and properties for that attribute.

* type: Data type of the possible values for this attribute.
* indexed: Boolean, attribute is indexed.

» stored: Boolean, attribute is stored.

416

e tokenized: Boolean, attribute is stored.

* multivalued: Boolean, attribute can hold multiple values.

Sample Attribute Injection File

{
"inject": [

// Global attribute injection, all metacards

{
"attribute": "rating"

I

// Specific attribute injection, only "video" metacards

{
"attribute": "cloud-cover",
"metacardTypes": "video"

}

1,
"attributeTypes": {
"rating": {
"type": "STRING_TYPE",
"indexed": true,
"stored": true,
"tokenized": true,
"multivalued": true
Iy
"cloud-cover": {
"type": "STRING_TYPE",
"indexed": true,
"stored": true,
"tokenized": true,
"multivalued": false

27.7. Developing Endpoints
Custom endpoints can be created, if necessary. See Endpoints for descriptions of provided endpoints.

Complete the following procedure to create an endpoint.

1. Create a Java class that implements the endpoint’s business logic. Example: Creating a web service
that external clients can invoke.

2. Add the endpoint’s business logic, invoking CatalogFramework calls as needed.

3. Import the DDF packages to the bundle’s manifest for run-time (in addition to any other required

417

packages):
Import-Package: ddf.catalog, ddf.catalog.*

4. Retrieve an instance of CatalogFramework from the OSGi registry. (Refer to OSGi Basics - Service
Registry for examples.)

5. Deploy the packaged service to DDF. (Refer to OSGi Basics - Bundles.)

It is recommended to use the maven bundle plugin to create the Endpoint bundle’s

NOTE
manifest as opposed to directly editing the manifest file.

No implementation of an interface is required
TIP Unlike other DDF components that require you to implement a standard interface, no
implementation of an interface is required in order to create an endpoint.

Table 92. Common Endpoint Business Logic
Methods Use
Ingest Add, modify, and remove metadata using the ingest-

related CatalogFramework methods:

create, update, and delete.

Query Request metadata using the query method.

Source Get available Source information.

Resource Retrieve products referenced in Metacards from Sources.
Transform Convert common Catalog Framework data types to and from other

data formats.

27.8. Developing Input Transformers

DDF supports the creation of custom input transformers for use cases not covered by the included
implementations.

Creating a custom input Transformer:

1. Create a new Java class that implements ddf.catalog.transform.InputTransformer.
public class SampleInputTransformer implements ddf.catalog.transform.InputTransformer

2. Implement the transform methods.
public Metacard transform(InputStream input) throws IOException, CatalogTransformerException
public Metacard transform(InputStream input, String id) throws I0Exception,
CatalogTransformerException

3. Import the DDF interface packages to the bundle manifest (in addition to any other required
packages).
Import-Package: ddf.catalog,ddf.catalog.transform

4. Create an OSGi descriptor file to communicate with the OSGi Service Registry (described in the

418

OSGi Basics section). Export the service to the OSGi Registry and declare service properties.

Input Transformer Blueprint Descriptor Example

<service ref="SampleInputTransformer" interface=
"ddf.catalog.transform.InputTransformer">
<service-properties>
<entry key="shortname" value="[[sampletransform]]" />
<entry key="title" value="[[Sample Input Transformer]]" />
<entry key="description" value="[[A new transformer for metacard input.]]" />
</service-properties>
</service>

Table 93. Input Transformer Variable Descriptions / Blueprint Service Properties

Key Description of Value Example

shortname (Required) An abbreviation for the return-type atom
of the BinaryContent being sent to the user.

title (Optional) A user-readable title that describes ~ Atom Entry Transformer Service
(in greater detail than the shortname) the
service.

description (Optional) A short, human-readable description [his service converts a single

metacard xml document to an

that describes the functionality of the service
atom entry element.

and the output.

5. Deploy OSGi Bundle to OSGi runtime.

27.8.1. Create an XML Input Transformer using SaxEventHandlers

For a transformer to transform XML, (as opposed to JSON or a Word document, for example) there is a
simpler solution than fully implementing a MetacardValidator. DDF includes an extensible,
configurable XmlInputTransformer. This transformer can be instantiated via blueprint as a managed
service factory and configured via metatype. The XmlInputTransformer takes a configuration of
SaxEventHandlers. A SaxEventHandler is a class that handles SAX Events (a very fast XML parser) to parse
metadata and create metacards. Any number of SaxEventHandlers can be implemented and included in
the XmlInputTransformer configuration. See the catalog-transformer-streaming-impl bundle for
examples (XmlSaxEventHandlerImpl which parses the DDF Metacard XML Metadata and the GmlHandler
which parses GML 2.0) Each SaxEventHandler implementation has a SaxEventHandlerFactory associated
with it. The SaxEventHandlerFactory is responsible for instantiating new SaxEventHandlers - each
transform request gets a new instance of XmlInputTransformer and set of SaxEventHandlers to be thread-
and state-safe.

The following diagrams intend to clarify implementation details:

419

The XmlInputTransformer Configuration diagram shows the XmlInputTransformer configuration, which is
configured using the metatype and has the SaxEventHandlerFactory ids. Then, when a transform request
is received, the ManagedServiceFactory instantiates a new XmlInputTransformer. This XmlInputTransformer
then instantiates a new SaxEventHandlerDelegate with the configured SaxEventHandlersFactory ids. The
factories all in turn instantiate a SaxEventHandler. Then, the SaxEventHandlerDelegate begins parsing the
XML input document, handing the SAX Events off to each SaxEventHandler, which handle them if they
can. After parsing is finished, each SaxEventHandler returns a list of Attributes to the
SaxEventHandlerDelegate and XmlInputTransformer which add the attributes to the metacard and then
return the fully constructed metacard.

XmllnputTransformer Configuration

L} String value of SaxEventHandlerFactoryl id

String value of SaxEventHandlerFactory2 id

XMLInputTransformer Configuration

XmlinputTransformer

L} S5axEventHandlerDelegate

SaxEventHandlerFactoryl —p | SaxEventHandlerl

— SaxEventHandlerFactory2 —p | SaxEventHandler2

XMLInputTransformer SaxEventHandlerDelegate Configuration

For more specific details, see the Javadoc for the org.codice.ddf.transformer.xml.streaming.* package.
Additionally, see the source code for the
org.codice.ddf.transformer.xml.streaming.impl.GmlHandler.java,
org.codice.ddf.transformer.xml.streaming.impl.GmlHandlerFactory,
org.codice.ddf.transformer.xml.streaming.impl.XmlInputTransformerImpl, and

420

org.codice.ddf.transformer.xml.streaming.impl.XmlInputTransformerImplFactory.

1. The XmlInputTransformer & SaxEventHandlerDelegate create and configure
themselves based on String matches of the configuration ids with the
SaxEventHandlerFactory ids, so ensure these match.

2. The XmlInputTransformer uses a DynamicMetacardType. This is pertinent because a

NOTE metacards attributes are only stored in Solr if they are declared on the
MetacardType. Since the DynamicMetacardType is constructed dynamically, attributes

are declared by the SaxEventHandlerFactory that parses them, as opposed to the

MetacardType. See
org.codice.ddf.transformer.xml.streaming.impl.XmlSaxEventHandlerFactoryImpl.jav

avs ddf.catalog.data.impl.BasicTypes.java

27.8.2. Create an Input Transformer Using Apache Camel

Alternatively, make an Apache Camel route in a blueprint file and deploy it using a feature file or via
hot deploy.

27.8.2.1. Input Transformer Design Pattern (Camel)
Follow this design pattern for compatibility:

From

When using from, catalog:inputtransformer?id=text/xml, an Input Transformer will be created and
registered in the OSGi registry with an id of text/xml.

To

When using to, catalog:inputtransformer?id=text/xml, an Input Transformer with an id matching
text/xml will be discovered from the OSGi registry and invoked.

Table 94. InputTransformer Message Formats

Exchange Type Field Type

Request (comes from <from> in the route) body java.io.InputSt
ream

Response (returned after called via <to> in the body ddf.catalog.dat

route) a.Metacard

Its always a good idea to wrap the mimeType value with the RAW parameter as shown in
TIP the example above. This will ensure that the value is taken exactly as is, and is especially
useful when you are using special characters.

421

InputTransformer Creation Example

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">
<camelContext xmlns="http://camel.apache.org/schema/blueprint">
<route>
<from uri="catalog:inputtransformer?mimeType=RAW(id=text/xml;id=vehicle)"/>
<to uri="xslt:vehicle.xslt" /> <!-- must be on classpath for this bundle -->
<to uri=
"catalog:inputtransformer?mimeType=RAW(id=application/json;id=geojson)" />
</route>
</camelContext>
</blueprint>

InputTransformer Creation Details

1. Defines this as an Apache Aries blueprint file.

2. Defines the Apache Camel context that contains the route.
3. Defines start of an Apache Camel route.
4

. Defines the endpoint/consumer for the route. In this case it is the DDF custom catalog component
that is an InputTransformer registered with an id of text/xml;id=vehicle meaning it can transform
an InputStream of vehicle data into a metacard. Note that the specified XSL stylesheet must be on
the classpath of the bundle that this blueprint file is packaged in.

5. Defines the XSLT to be used to transform the vehicle input into GeoJSON format using the Apache
Camel provided XSLT component.

6. Defines the route node that accepts GeoJSON formatted input and transforms it into a Mmtacard,
using the DDF custom catalog component that is an InputTransformer registered with an id of
application/json;id=geojson.

An example of using an Apache Camel route to define an InputTransformer in a
NOTE blueprint file and deploying it as a bundle to an OSGi container can be found in the
DDF SDK examples at DDF/sdk/sample-transformers/xslt-identity-input-transformer

27.8.3. Input Transformer Boot Service Flag

The org.codice.ddf.platform.bootflag.BootServiceFlag service with a service property of
id=inputTransformerBootFlag is used to indicate certain Input Transformers are ready in the system.
Adding an Input Transformers ID to a new or existing JSON file under <DDF_HOME>/etc/transformers will
cause the service to wait for an Input Transformer with the given ID.

27.9. Developing Metacard Transformers

In general, a MetacardTransformer is used to transform a Metacard into some desired format useful to the
end user or as input to another process. Programmatically, a MetacardTransformer transforms a Metacard

422

into a BinaryContent instance, which translates the Metacard into the desired final format. Metacard
transformers can be used through the Catalog Framework transform convenience method or requested
from the OSGi Service Registry by endpoints or other bundles.

27.9.1. Creating a New Metacard Transformer

Existing metacard transformers are written as Java classes, and these steps walk through the steps to
create a custom metacard transformer.

1. Create a new Java class that implements ddf.catalog.transform.MetacardTransformer.
public class SampleMetacardTransformer implements ddf.catalog.transform.MetacardTransformer

2. Implement the transform method.
public BinaryContent transform(Metacard metacard, Map<String, Serializable> arguments) throws
CatalogTransformerException

a. transform must return a Metacard or throw an exception. It cannot return null.

3. Import the DDF interface packages to the bundle manifest (in addition to any other required
packages).
Import-Package: ddf.catalog,ddf.catalog.transform

4. Create an OSGi descriptor file to communicate with the OSGi Service registry (described in the OSGi
Basics section). Export the service to the OSGi registry and declare service properties.

Metacard Transformer Blueprint Descriptor Example

<service ref="SampleMetacardTransformer" interface=
"ddf.catalog.transform.MetacardTransformer">
<service-properties>
<entry key="shortname" value="[[sampletransform]]" />
<entry key="title" value="[[Sample Metacard Transformer]]" />
<entry key="description" value="[[A new transformer for metacards.]]" />
</service-properties>
</service>

5. Deploy OSGi Bundle to OSGi runtime.

Table 95. Metacard Transformer Blueprint Service Properties / Variable Descriptions

Key Description of Value Example

shortname (Required) An abbreviation for atom
the return type of the
BinaryContent being sent to the
user.

423

Key Description of Value Example

title (Optional) A user-readable title =~ Atom Entry Transformer Service

that describes (in greater detail
than the shortname) the service.

description (Optional) A short, human- This service converts a single

readable description that metacard xml document to an
describes the functionality of the atom entry element.
service and the output.

27.10. Developing Query Response Transformers

A QueryResponseTransformer is used to transform a List of Results from a SourceResponse. Query
Response Transformers can be used through the Catalog transform convenience method or requested
from the OSGi Service Registry by endpoints or other bundles.

1.

Create a new Java class that implements ddf.catalog.transform.QueryResponseTransformer.

public class SampleResponseTransformer implements
ddf.catalog.transform.QueryResponseTransformer

Implement the transform method.

public BinaryContent transform(SourceResponse upstreamResponse, Map<String, Serializable>
arguments) throws CatalogTransformerException

Import the DDF interface packages to the bundle manifest (in addition to any other required
packages).
Import-Package: ddf.catalog, ddf.catalog.transform

Create an OSGi descriptor file to communicate with the OSGi Service Registry (described in OSGi
Basics). Export the service to the OSGi registry and declare service properties.

Deploy OSGi Bundle to OSGi runtime.

Query Response Transformer Blueprint Descriptor Example

<service ref="SampleResponseTransformer" interface=
"ddf.catalog.transform.QueryResponseTransformer">
<service-properties>
<entry key="1id" value="[[sampleld]]" />
<entry key="shortname" value="[[sampletransform]]" />
<entry key="title" value="[[Sample Response Transformer]]" />
<entry key="description" value="[[A new transformer for response queues.]]" />
</service-properties>
</service>

Table 96. Query Response Transformer Blueprint Service Properties / Variable Descriptions

424

Key Description of Value Example

id A unique identifier to target a atom
specific query response
transformer.

shor tname An abbreviation for the return atom

type of the BinaryContent being
sent to the user.

title A user-readable title that Atom Entry Transformer Service
describes (in greater detail than
the shortname) the service.

description A short, human-readable This service converts a single
description that describes the metacard xml document to an
functionality of the service and atom entry element.
the output.

27.11. Developing Sources

Sources are components that enable DDF to talk to back-end services. They let DDF perform query and
ingest operations on catalog stores and query operations on federated sources.

[Endpoints] (Remote Sources) EDxaternal
ta
.) 5 Federated Sources ——— Holdings
perations ata
Connected Sources D .
Catalog Stores —+—bp External
Transformers Federation Data
Catalog Framework | E - Holdings
venting
Catalog
Plugins | Resources J
Catalog Provider
{ Storage Provider J
Data Store
Source Architecture

27.11.1. Implement a Source Interface

There are three types of sources that can be created to perform query operations. All of these sources
must also be able to return their availability and the list of content types currently stored in their back-
end data stores.

425

Catalog Provider

ddf.catalog.source.CatalogProvider is used to communicate with back-end storage and allows for
Query and Create/Update/Delete operations.

Federated Source

ddf.catalog.source.FederatedSource is used to communicate with remote systems and only allows
query operations.

Connected Source

ddf.catalog.source.ConnectedSource is similar to a Federated Source with the following exceptions:

* Queried on all local queries
» ‘SiteName " is hidden (masked with the DDF sourceld) in query results

» ‘SiteService " does not show this Source’s information separate from DDF’s.

Catalog Store

catalog.store.interface is used to store data.
The procedure for implementing any of the source types follows a similar format:
1. Create a new class that implements the specified Source interface, the ConfiguredService and the
required methods.
2. Create an OSGi descriptor file to communicate with the OSGi registry. (Refer to OSGi Services.)
a. Import DDF packages.
b. Register source class as service to the OSGi registry.

3. Deploy to DDF.

The factory-pid property of the metatype must contain one of the following in

IMPORTANT . .
the name: service, Service, source, Source

Remote sources currently extend the ResourceReader interface. However, a RemoteSource
is not treated as a ResourceReader. The getSupportedSchemes() method should never be

NOTE called on a RemoteSource, thus the suggested implementation for a RemoteSource is to
return an empty set. The retrieveResource(-+) and getOptions(-) methods will be
called and MUST be properly implemented by a RemoteSource.

27.11.1.1. Developing Catalog Providers

Create a custom implementation of a catalog provider.

1. Create a Java class that implements CatalogProvider.
public class TestCatalogProvider implements ddf.catalog.source.CatalogProvider

426

2. Implement the required methods from the ddf.catalog.source.CatalogProvider interface.

public CreateResponse create(CreateRequest createRequest) throws IngestException; public
UpdateResponset update(UpdateRequest updateRequest) throws IngestException; public
DeleteResponse delete(DeleteRequest deleteRequest) throws IngestException;

Import the DDF interface packages to the bundle manifest (in addition to any other required
packages).

Import-Package: ddf.catalog, ddf.catalog.source

4. Export the service to the OSGi registry.

Catalog Provider Blueprint example

<service ref="TestCatalogProvider" interface="ddf.catalog.source.CatalogProvider" />

See the existing Catalog Provider list for examples of Catalog Providers included in DDF.

27.11.1.2. Developing Federated Sources

1.

4.

Create a Java class that implements FederatedSource and ConfiguredService.

public class TestFederatedSource implements ddf.catalog.source.FederatedSource,
ddf.catalog.service.ConfiguredService

Implement the required methods of the ddf.catalog.source.FederatedSource and
ddf.catalog.service.ConfiguredService interfaces.

Import the DDF interface packages to the bundle manifest (in addition to any other required
packages).
Import-Package: ddf.catalog, ddf.catalog.source

Export the service to the OSGi registry.

Federated Source Blueprint example

<service ref="TestFederatedSource" interface="ddf.catalog.source.FederatedSource" />

27.11.1.3. Developing Connected Sources

Create a custom implementation of a connected source.

1. Create a Java class that implements ConnectedSource and ConfiguredService.

public class TestConnectedSource implements ddf.catalog.source.ConnectedSource,
ddf.catalog.service.ConfiguredService

Implement the required methods of the ddf.catalog.source.ConnectedSource and
ddf.catalog.service.ConfiguredService interfaces.

Import the DDF interface packages to the bundle manifest (in addition to any other required
packages).
Import-Package: ddf.catalog, ddf.catalog.source

427

4. Export the service to the OSGi registry.

Connected Source Blueprint example

<service ref="TestConnectedSource" interface="ddf.catalog.source.ConnectedSource" />

In some Providers that are created, there is a need to make Web Service calls
through JAXB clients. It is best to NOT create a JAXB client as a global variable.

IMPORTANT There may be intermittent failures with the creation of Providers and federated
sources when clients are created in this manner. To avoid this issue, create any
JAXB within the methods requiring it.

27.11.1.4. Exception Handling

In general, sources should only send information back related to the call, not implementation details.

27.11.1.4.1. Exception Examples

Follow these guidelines for effective exception handling:
* Use a "Site XYZ not found" message rather than the full stack trace with the original site not found
exception.

o If the caller issues a malformed search request, return an error describing the right form, or
specifically what was not recognized in the request. Do not return the exception and stack trace
where the parsing broke.

o If the caller leaves something out, do not return the null pointer exception with a stack trace,
rather return a generic exception with the message "xyz was missing."

27.11.1.4.2. External Resources for Developing Sources

* Three Rules for Effective Exception Handling .

27.12. Developing Catalog Plugins

Plugins extend the functionality of the Catalog Framework by performing actions at specified times
during a transaction. Plugin interfaces are located in the Catalog Core API. By implementing a plugin
interface, actions can be performed at the desired time.

The following types of plugins can be created:

Table 97. Plugin Interfaces

Plugin Type Plugin Interface Invocation Order

Pre-Authorization ddf.catalog.plugin.PreAuthorizationPlugin Before any security
rules are applied.

428

http://today.java.net/pub/a/today/2003/12/04/exceptions.html

Plugin Type
Policy

Access

Pre-Ingest

Post-Ingest

Pre-Query

Post-Query

Pre-Federated-Query

Post-Federated-Query

Pre-Resource

Post-Resource

Pre-Create Storage

Post-Create Storage

Pre-Update Storage

Plugin Interface

ddf.catalog.plugin.

ddf.

ddf.

ddf.

ddf.

ddf.

ddf.
ddf.
ddf.

ddf.
ddf.
ddf.
in

ddf.

catalog.

catalog.

catalog.

catalog.

catalog.

catalog.

catalog.

catalog.

catalog.

catalog.

catalog.

catalog.

plugin.

plugin.

plugin.

plugin.

plugin.

plugin.

plugin.

plugin.

plugin.

content.plugin.PreCreateStoragePlugi

content.plugin.PostCreateStoragePlug

content.plugin.PreUpdateStoragePlugi

PolicyPlugin

AccessPlugin

PreIngestPlugin

PostIngestPlugin

PreQueryPlugin

PostQueryPlugin

PreFederatedQueryPlugin

PostFederatedQueryPlugin

PreResourcePlugin

PostResourcePlugin

Invocation Order

After pre-authorization
plugins, but before
other catalog plugins to
establish the policy for
requests/responses.

Directly after any policy
plugins

Before the
Create/Update/Delete
method is sent to the
Catalog Provider.

After the
Create/Update/Delete
method is sent to the
Catalog Provider.

Prior to the Query/Read
method being sent to the
Source.

After results have been
retrieved from the
query but before they
are posted to the
Endpoint.

Before a federated
query is executed.

After a federated query
has been executed.

Prior to a Resource
being retrieved.

After a Resource is
retrieved, but before it
is sent to the Endpoint.

Experimental Before an
item is created in the
content repository.

Experimental After an
item is created in the
content repository.

Experimental Before an
item is updated in the
content repository.

429

Plugin Type Plugin Interface Invocation Order

Post-Update Storage (_1df.catalog.content.plugin.PostUpdateStoragePlug Experimental After an
n item is updated in the
content repository.

Pre-Subscription ddf.catalog.plugin.PreSubscriptionPlugin Prior to a Subscription
being created or
updated.

Pre-Delivery ddf.catalog.plugin.PreDeliveryPlugin Prior to the delivery of a

Metacard when an
event is posted.

27.12.1. Implementing Catalog Plugins
The procedure for implementing any of the plugins follows a similar format:

1. Create a new class that implements the specified plugin interface.

2. Implement the required methods.

3. Create an OSGi descriptor file to communicate with the OSGi registry.
a. Register the plugin class as a service to OSGi registry.

4. Deploy to DDF.

Plugin Performance Concerns

NOTE Plugins should include a check to determine if requests are local or not. It is usually
preferable to take no action on non-local requests.

Refer to the Javadoc for more information on all Requests and Responses in the

TIP
ddf.catalog.operation and ddf.catalog.event packages.

27.12.1.1. Catalog Plugin Failure Behavior

In the event that this Catalog Plugin cannot operate but does not wish to fail the transaction, a
PluginExecutionException should be thrown. If processing is to be explicitly stopped, a
StopProcessingException should be thrown. For any other exceptions, the Catalog should "fail fast" and
cancel the Operation.

27.12.1.2. Implementing Pre-Ingest Plugins
Develop a custom Pre-Ingest Plugin.

1. Create a Java class that implements PreIngestPlugin.
public class SamplePreIngestPlugin implements ddf.catalog.plugin.PreIngestPlugin

2. Implement the required methods.

430

o public CreateRequest process(CreateRequest input) throws PluginExecutionException,
StopProcessingException;

o public UpdateRequest process(UpdateRequest input) throws PluginExecutionException,
StopProcessingException;

o public DeleteRequest process(DeleteRequest input) throws PluginExecutionException,
StopProcessingException;

3. Import the DDF interface packages to the bundle manifest (in addition to any other required
packages).
Import-Package: ddf.catalog,ddf.catalog.plugin

4. Export the service to the OSGi registry.

Blueprint descriptor example <service ref="SamplePreIngestPlugin”
interface="ddf.catalog.plugin.PreIngestPlugin" />

27.12.1.3. Implementing Post-Ingest Plugins

Develop a custom Post-Ingest Plugin.

1. Create a Java class that implements PostIngestPlugin.
public class SamplePostIngestPlugin implements ddf.catalog.plugin.PostIngestPlugin
2. Implement the required methods.
» public CreateResponse process(CreateResponse input) throws PluginExecutionException;
» public UpdateResponse process(UpdateResponse input) throws PluginExecutionException;
- public DeleteResponse process(DeleteResponse input) throws PluginExecutionException;

3. Import the DDF interface packages to the bundle manifest (in addition to any other required
packages).
Import-Package: ddf.catalog,ddf.catalog.plugin

4. Export the service to the OSGi registry.

Blueprint descriptor example <service ref="SamplePostIngestPlugin"
interface="ddf.catalog.plugin.PostIngestPlugin" />

27.12.1.4. Implementing Pre-Query Plugins

Develop a custom Pre-Query Plugin

1. Create a Java class that implements PreQueryPlugin.
public class SamplePreQueryPlugin implements ddf.catalog.plugin.PreQueryPlugin

2. Implement the required method.

public QueryRequest process(QueryRequest input) throws PluginExecutionException,
StopProcessingException;

3. Import the DDF interface packages to the bundle manifest (in addition to any other required
packages).
Import-Package: ddf.catalog,ddf.catalog.plugin

4. Export the service to the OSGi registry.

431

<service ref="SamplePreQueryPlugin" interface="ddf.catalog.plugin.PreQueryPlugin" />

27.12.1.5. Implementing Post-Query Plugins

Develop a custom Post-Query Plugin

1. Create a Java class that implements PostQueryPlugin.
public class SamplePostQueryPlugin implements ddf.catalog.plugin.PostQueryPlugin

2. Implement the required method.
public QueryResponse process(QueryResponse input) throws PluginExecutionException,
StopProcessingException;

3. Import the DDF interface packages to the bundle manifest (in addition to any other required
packages).
Import-Package: ddf.catalog,ddf.catalog.plugin

4. Export the service to the OSGi registry.
<service ref="SamplePostQueryPlugin" interface="ddf.catalog.plugin.PostQueryPlugin" />

27.12.1.6. Implementing Pre-Delivery Plugins

Develop a custom Pre-Delivery Plugin.

1. Create a Java class that implements PreDeliveryPlugin.
public class SamplePreDeliveryPlugin implements ddf.catalog.plugin.PreDeliveryPlugin

2. Implement the required methods.
public Metacard processCreate(Metacard metacard) throws PluginExecutionException,
StopProcessingException; public Update processUpdateMiss(Update update) throws
PluginExecutionException, StopProcessingException;

- public Update processUpdateHit(Update update) throws PluginExecutionException,
StopProcessingException;

o public Metacard processCreate(Metacard metacard) throws PluginExecutionException,
StopProcessingException;

3. Import the DDF interface packages to the bundle manifest (in addition to any other required
packages).
Import-Package: ddf.catalog,ddf.catalog.plugin,ddf.catalog.operation,ddf.catalog.event

4. Export the service to the OSGi registry.
Blueprint descriptor example
<service ref="SamplePreDeliveryPlugin" interface="ddf.catalog.plugin.PreDeliveryPlugin" />

27.12.1.7. Implementing Pre-Subscription Plugins

Develop a custom Pre-Subscription Plugin.

1. Create a Java class that implements PreSubscriptionPlugin.
“public class SamplePreSubscriptionPlugin implements ddf.catalog.plugin.PreSubscriptionPlugin

432

2. Implement the required method.

o public Subscription process(Subscription input) throws PluginExecutionException,
StopProcessingException;

27.12.1.8. Implementing Pre-Resource Plugins

Develop a custom Pre-Resource Plugin.
1. Create a Java class that implements PreResourcePlugin. public class SamplePreResourcePlugin
implements ddf.catalog.plugin.PreResourcePlugin
2. Implement the required method.

o public ResourceRequest process(ResourceRequest input) throws PluginExecutionException,
StopProcessingException;

3. Import the DDF interface packages to the bundle manifest (in addition to any other required
packages).
Import-Package: ddf.catalog,ddf.catalog.plugin,ddf.catalog.operation

4. Export the service to the OSGi registry. .Blueprint descriptor example

<service ref="SamplePreResourcePlugin" interface="ddf.catalog.plugin.PreResourcePlugin"
/>

27.12.1.9. Implementing Post-Resource Plugins

Develop a custom Post-Resource Plugin.
1. Create a Java class that implements PostResourcePlugin.
public class SamplePostResourcePlugin implements ddf.catalog.plugin.PostResourcePlugin

2. Implement the required method.

o public ResourceResponse process(ResourceResponse input) throws PluginExecutionException,
StopProcessingException;

3. Import the DDF interface packages to the bundle manifest (in addition to any other required
packages).
Import-Package: ddf.catalog,ddf.catalog.plugin,ddf.catalog.operation

4. Export the service to the OSGi registry.

Blueprint descriptor example

<]1" inter"[[SamplePostResourcePlugin" interface="ddf.catalog.plugin.PostResourcePlugin"
/>

27.12.1.10. Implementing Policy Plugins

Develop a custom Policy Plugin.

433

1. Create a Java class that implements PolicyPlugin.

public class SamplePolicyPlugin implements ddf.catalog.plugin.PolicyPlugin

2. Implement the required methods.

o

PolicyResponse processPreCreate(Metacard input, Map<String, Serializable> properties)
throws StopProcessingException;

PolicyResponse processPreUpdate(Metacard input, Map<String, Serializable> properties)
throws StopProcessingException;

PolicyResponse processPreDelete(String attributeName, List<Serializable> attributeValues,
Map<String, Serializable> properties) throws StopProcessingException;

PolicyResponse processPreQuery(Query query, Map<String, Serializable> properties) throws
StopProcessingException;

PolicyResponse processPostQuery(Result input, Map<String, Serializable> properties) throws
StopProcessingException;

3. Import the DDF interface packages to the bundle manifest (in addition to any other required

packages).
Import-Package: ddf.catalog,ddf.catalog.plugin,ddf.catalog.operation

4. Export the service to the OSGi registry.

Blueprint descriptor example
<]J1" inter"[[SamplePolicyPlugin" interface="ddf.catalog.plugin.PolicyPlugin" />

27.12.1.11. Implementing Access Plugins

Develop a custom Access Plugin.

1. Create a Java class that implements AccessPlugin.

o

public class SamplePostResourcePlugin implements ddf.catalog.plugin.AccessPlugin

Implement the required methods.

CreateRequest processPreCreate(CreateRequest input) throws StopProcessingException;

» UpdateRequest processPreUpdate(UpdateRequest input) throws StopProcessingException;
- DeleteRequest processPreDelete(DeleteRequest input) throws StopProcessingException;
» QueryRequest processPreQuery(QueryRequest input) throws StopProcessingException;
» QueryResponse processPostQuery(QueryResponse input) throws StopProcessingException;
Import the DDF interface packages to the bundle manifest (in addition to any other required
packages).
Import-Package: ddf.catalog,ddf.catalog.plugin,ddf.catalog.operation
Export the service to the OSGi registry.

Blueprint descriptor example
<]J1" inter"[[SampleAccessPlugin" interface="ddf.catalog.plugin.AccessPlugin" />

27.13. Developing Token Validators

Token validators are used by the Security Token Service (STS) to validate incoming token requests. The

434

TokenValidator CXF interface must be implemented by all custom token validators. The canHandleToken
and validateToken methods must be overridden. The canHandleToken method should return true or false
based on the ValueType value of the token that the validator is associated with. The validator may be
able to handle any number of different tokens that you specify. The validateToken method returns a
TokenValidatorResponse object that contains the Principal of the identity being validated and also
validates the ReceivedToken object collected from the RST (RequestSecurityToken) message.

27.14. Developing STS Claims Handlers

Develop a custom claims handler to retrieve attributes from an external attribute store.

A claim is an additional piece of data about a subject that can be included in a token along with basic
token data. A claims manager provides hooks for a developer to plug in claims handlers to ensure that
the STS includes the specified claims in the issued token.

The following steps define the procedure for adding a custom claims handler to the STS.

1. The new claims handler must implement the org.apache.cxf.sts.claims.ClaimsHander interface.

435

/**

Licensed to the Apache Software Foundation (ASF) under one
or more contributor license agreements. See the NOTICE file
distributed with this work for additional information
regarding copyright ownership. The ASF licenses this file
to you under the Apache License, Version 2.0 (the
"License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at

b T R R

*

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing,
software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, either express or implied. See the License for the
specific language governing permissions and limitations
under the License.

LR T R T R R

*
~

package org.ap